
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8082878/publications.pdf Version: 2024-02-01

Ринова Марраск

#	Article	IF	CITATIONS
1	SARS-CoV-2 Variants of Concern and Variants of Interest Receptor Binding Domain Mutations and Virus Infectivity. Frontiers in Immunology, 2022, 13, 825256.	2.2	54
2	Tolerance induction in memory CD4 T cells is partial and reversible. Immunology, 2021, 162, 68-83.	2.0	4
3	Immune-based mutation classification enables neoantigen prioritization and immune feature discovery in cancer immunotherapy. Oncolmmunology, 2021, 10, 1868130.	2.1	17
4	The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Research, 2021, 31, 720-722.	5.7	129
5	Structures suggest an approach for converting weak self-peptide tumor antigens into superagonists for CD8 T cells in cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2100588118.	3.3	9
6	501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimab <i>in vitro</i> . MAbs, 2021, 13, 1919285.	2.6	65
7	Lysosomal cathepsin creates chimeric epitopes for diabetogenic CD4 T cells via transpeptidation. Journal of Experimental Medicine, 2021, 218, .	4.2	34
8	Obsessive-Compulsive Behavior Isn't Necessarily a Bad Thing. Annual Review of Immunology, 2020, 38, 1-21.	9.5	2
9	JMJD5 couples with CDK9 to release the paused RNA polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19888-19895.	3.3	8
10	Age-associated B Cells Appear in Patients with Granulomatous Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1013-1023.	2.5	20
11	JMJD6 cleaves MePCE to release positive transcription elongation factor b (P-TEFb) in higher eukaryotes. ELife, 2020, 9, .	2.8	20
12	Inherent reactivity of unselected TCR repertoires to peptide-MHC molecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22252-22261.	3.3	17
13	How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes. Science Immunology, 2019, 4, .	5.6	38
14	C-terminal modification of the insulin B:11–23 peptide creates superagonists in mouse and human type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 162-167.	3.3	60
15	Specific Recognition of Arginine Methylated Histone Tails by JMJD5 and JMJD7. Scientific Reports, 2018, 8, 3275.	1.6	23
16	Modulation of the Alternative Pathway of Complement by Murine Factor H–Related Proteins. Journal of Immunology, 2018, 200, 316-326.	0.4	14
17	Age (autoimmunity) associated B cells (ABCs) and their relatives. Current Opinion in Immunology, 2018, 55, 75-80.	2.4	44
18	Where Have All the Flowers Gone?. Journal of Immunology, 2018, 201, 5-6.	0.4	0

#	Article	IF	CITATIONS
19	TCR signal strength controls thymic differentiation of iNKT cell subsets. Nature Communications, 2018, 9, 2650.	5.8	79
20	Nicotine Impairs Macrophage Control of <i>Mycobacterium tuberculosis</i> . American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 324-333.	1.4	48
21	The domestic cat antibody response to feline herpesvirus-1 increases with age. Veterinary Immunology and Immunopathology, 2017, 188, 65-70.	0.5	8
22	Old and new adjuvants. Current Opinion in Immunology, 2017, 47, 44-51.	2.4	170
23	T-bet expressing B cells – Novel target for autoimmune therapies?. Cellular Immunology, 2017, 321, 35-39.	1.4	31
24	Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7717-E7726.	3.3	48
25	B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. Journal of Clinical Investigation, 2017, 127, 1392-1404.	3.9	222
26	The somatically generated portion of T cell receptor CDR3α contributes to the MHC allele specificity of the T cell receptor. ELife, 2017, 6, .	2.8	25
27	T Cell Production of IFNÎ ³ in Response to TLR7/IL-12 Stimulates Optimal B Cell Responses to Viruses. PLoS ONE, 2016, 11, e0166322.	1.1	64
28	Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5608-E5617.	3.3	25
29	Contamination of DNase Preparations Confounds Analysis of the Role of DNA in Alum-Adjuvanted Vaccines. Journal of Immunology, 2016, 197, 1221-1230.	0.4	14
30	CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in Spleen and Are Potent APCs. Journal of Immunology, 2015, 195, 71-79.	0.4	179
31	Sexual dimorphism in autoimmunity. Journal of Clinical Investigation, 2015, 125, 2187-2193.	3.9	172
32	TLR7, IFNÎ ³ , and T-bet: Their roles in the development of ABCs in female-biased autoimmunity. Cellular Immunology, 2015, 294, 80-83.	1.4	45
33	Age-Associated B Cells: A T-bet–Dependent Effector with Roles in Protective and Pathogenic Immunity. Journal of Immunology, 2015, 195, 1933-1937.	0.4	189
34	N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13318-13323.	3.3	40
35	Cutting Edge: Roles for Batf3-Dependent APCs in the Rejection of Minor Histocompatibility Antigen–Mismatched Grafts. Journal of Immunology, 2015, 195, 46-50.	0.4	17
36	A Rapid Method to Characterize Mouse IgG Antibodies and Isolate Native Antigen Binding IgG B Cell Hybridomas. PLoS ONE, 2015, 10, e0136613.	1.1	13

#	Article	IF	CITATIONS
37	Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8553-8558.	3.3	34
38	Tolerance induction in memory CD4 T cells requires two rounds of antigen-specific activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7735-7740.	3.3	16
39	Molecules in medicine mini review: the αβ T cell receptor. Journal of Molecular Medicine, 2014, 92, 735-741.	1.7	24
40	Structural Basis of Chronic Beryllium Disease: Linking Allergic Hypersensitivity and Autoimmunity. Cell, 2014, 158, 132-142.	13.5	101
41	Recognition of self and altered self by T cells in autoimmunity and allergy. Protein and Cell, 2013, 4, 8-16.	4.8	36
42	TLR7 drives accumulation of ABCs and autoantibody production in autoimmune-prone mice. Immunologic Research, 2013, 55, 210-216.	1.3	71
43	Host DNA released in response to aluminum adjuvant enhances MHC class II-mediated antigen presentation and prolongs CD4 T-cell interactions with dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1122-31.	3.3	115
44	Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. Journal of Experimental Medicine, 2013, 210, 1403-1418.	4.2	57
45	T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3216-24.	3.3	241
46	MAIT Cell Recognition of MR1 on Bacterially Infected and Uninfected Cells. PLoS ONE, 2013, 8, e53789.	1.1	40
47	Influenza Nucleoprotein Delivered with Aluminium Salts Protects Mice from an Influenza A Virus That Expresses an Altered Nucleoprotein Sequence. PLoS ONE, 2013, 8, e61775.	1.1	16
48	The Ikaros Transcription Factor Regulates Responsiveness to IL-12 and Expression of IL-2 Receptor Alpha in Mature, Activated CD8 T Cells. PLoS ONE, 2013, 8, e57435.	1.1	9
49	Age-associated B cells: are they the key to understanding why autoimmune diseases are more prevalent in women?. Expert Review of Clinical Immunology, 2012, 8, 5-7.	1.3	17
50	T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18517-18522.	3.3	43
51	Do MHCII-Presented Neoantigens Drive Type 1 Diabetes and Other Autoimmune Diseases?. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007765-a007765.	2.9	43
52	A Closer Look at TCR Germline Recognition. Immunity, 2012, 36, 887-888.	6.6	20
53	T cells and their eonsâ€old obsession with <scp>MHC</scp> . Immunological Reviews, 2012, 250, 49-60.	2.8	58
54	iNKT Cells Suppress the CD8+ T Cell Response to a Murine Burkitt's-Like B Cell Lymphoma. PLoS ONE, 2012, 7, e42635.	1.1	33

#	Article	IF	CITATIONS
55	Specificity and detection of insulin-reactive CD4 ⁺ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16729-16734.	3.3	128
56	Evolutionarily Conserved Features Contribute to αβ T Cell Receptor Specificity. Immunity, 2011, 35, 526-535.	6.6	57
57	Toll-like receptor 7 (TLR7)–driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood, 2011, 118, 1305-1315.	0.6	585
58	A Single T Cell Receptor Bound to Major Histocompatibility Complex Class I and Class II Glycoproteins Reveals Switchable TCR Conformers. Immunity, 2011, 35, 23-33.	6.6	80
59	A Molecular Basis for NKT Cell Recognition of CD1d-Self-Antigen. Immunity, 2011, 34, 315-326.	6.6	118
60	Memory CD4 T Cells That Express CXCR5 Provide Accelerated Help to B Cells. Journal of Immunology, 2011, 186, 2889-2896.	0.4	122
61	Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7914-7919.	3.3	123
62	Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo. Blood, 2010, 116, 5191-5199.	0.6	75
63	Genetic and hormonal factors in female-biased autoimmunity. Autoimmunity Reviews, 2010, 9, 494-498.	2.5	156
64	Immune mechanisms of protection: can adjuvants rise to the challenge?. BMC Biology, 2010, 8, 37.	1.7	82
65	Terminating the immune response. Immunological Reviews, 2010, 236, 5-10.	2.8	34
66	Chromogranin A is an autoantigen in type 1 diabetes. Nature Immunology, 2010, 11, 225-231.	7.0	303
67	Crystal structure of HLA-DP2 and implications for chronic beryllium disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7425-7430.	3.3	103
68	Diabetogenic T cells recognize insulin bound to IA ^{g7} in an unexpected, weakly binding register. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10978-10983.	3.3	175
69	Alum Induces Innate Immune Responses through Macrophage and Mast Cell Sensors, But These Sensors Are Not Required for Alum to Act As an Adjuvant for Specific Immunity. Journal of Immunology, 2009, 183, 4403-4414.	0.4	359
70	Many different Vβ CDR3s can reveal the inherent MHC reactivity of germline-encoded TCR V regions. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7951-7956.	3.3	29
71	Transgenic Bcl-3 slows T cell proliferation. International Immunology, 2009, 21, 339-348.	1.8	19
72	Germline-encoded amino acids in the αβ T-cell receptor control thymic selection. Nature, 2009, 458, 1043-1046.	13.7	149

#	Article	IF	CITATIONS
73	Towards an understanding of the adjuvant action of aluminium. Nature Reviews Immunology, 2009, 9, 287-293.	10.6	691
74	Jean Dausset (1916–2009). Immunity, 2009, 31, 171-173.	6.6	0
75	CD4 memory T cells: What are they and what can they do?. Seminars in Immunology, 2009, 21, 53-61.	2.7	111
76	CD8 Clonal Expansions in Mice: An Age-associated Alteration of CD8 Memory T-cells. , 2009, , 291-325.		0
77	T cell receptor specificity for major histocompatibility complex proteins. Current Opinion in Immunology, 2008, 20, 203-207.	2.4	23
78	Thymic selection stifles TCR reactivity with the main chain structure of MHC and forces interactions with the peptide side chains. Molecular Immunology, 2008, 45, 599-606.	1.0	19
79	Crossreactive T Cells Spotlight the Germline Rules for $\hat{I}\pm\hat{I}^2$ T Cell-Receptor Interactions with MHC Molecules. Immunity, 2008, 28, 324-334.	6.6	171
80	Evolutionarily Conserved Amino Acids That Control TCR-MHC Interaction. Annual Review of Immunology, 2008, 26, 171-203.	9.5	261
81	Gr1+IL-4-producing innate cells are induced in response to Th2 stimuli and suppress Th1-dependent antibody responses. International Immunology, 2008, 20, 659-669.	1.8	33
82	Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12997-13002.	3.3	35
83	The structure of HLA-DR52c: Comparison to other HLA-DRB3 alleles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11893-11897.	3.3	28
84	CD4 memory T cells divide poorly in response to antigen because of their cytokine profile. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14521-14526.	3.3	55
85	Gender specific disease propensities of bone marrow cells from New Zealand hybrid mice. FASEB Journal, 2008, 22, 667.18.	0.2	0
86	Evolutionarily conserved cysteines in the stalk region of CD3â€epsilon are critical for T cell development and function. FASEB Journal, 2008, 22, 662.20.	0.2	0
87	Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nature Immunology, 2007, 8, 1105-1113.	7.0	143
88	Apoptosis and the homeostatic control of immune responses. Current Opinion in Immunology, 2007, 19, 516-521.	2.4	122
89	Thymocytes and bone marrow cells in 1966: Where did we go from there?. Journal of Allergy and Clinical Immunology, 2006, 117, 962-964.	1.5	1
90	Ndfip1 Protein Promotes the Function of Itch Ubiquitin Ligase to Prevent T Cell Activation and T Helper 2 Cell-Mediated Inflammation. Immunity, 2006, 25, 929-940.	6.6	123

#	Article	IF	CITATIONS
91	Use of baculovirus MHC/peptide display libraries to characterize T-cell receptor ligands. Immunological Reviews, 2006, 210, 156-170.	2.8	65
92	Not all CD4 + memory T cells are long lived. Immunological Reviews, 2006, 211, 49-57.	2.8	40
93	Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nature Immunology, 2006, 7, 1191-1199.	7.0	101
94	Bcl-xl does not have to bind Bax to protect T cells from death. Journal of Experimental Medicine, 2006, 203, 2953-2961.	4.2	11
95	Bax does not have to adopt its final form to drive T cell death. Journal of Experimental Medicine, 2006, 203, 1147-1152.	4.2	17
96	Loss of the proapoptotic protein, Bim, breaks B cell anergy. Journal of Experimental Medicine, 2006, 203, 731-741.	4.2	56
97	Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunological Reviews, 2005, 205, 170-189.	2.8	69
98	Class II major histocompatibility complex-peptide tetramer staining in relation to functional avidity and T cell receptor diversity in the mouse CD4+ T cell response to a rheumatoid arthritis-associated antigen. Arthritis and Rheumatism, 2005, 52, 1885-1896.	6.7	32
99	Using a baculovirus display library to identify MHC class I mimotopes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2476-2481.	3.3	47
100	Interaction between Phosphatidylserine and the Phosphatidylserine Receptor Inhibits Immune Responses In Vivo. Journal of Immunology, 2005, 174, 1393-1404.	0.4	180
101	How the T Cell Repertoire Becomes Peptide and MHC Specific. Cell, 2005, 122, 247-260.	13.5	284
102	Complex and dynamic redistribution of NF-ÂB signaling intermediates in response to T cell receptor stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1004-1009.	3.3	57
103	Constitutive association of the proapoptotic protein Bim with Bcl-2-related proteins on mitochondria in T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7681-7686.	3.3	120
104	Commentary: TCR–MHC/peptide interactions: kissing-cousins or a shotgun wedding?. European Journal of Immunology, 2004, 34, 1243-1250.	1.6	18
105	Promotion of B Cell Immune Responses via an Alum-Induced Myeloid Cell Population. Science, 2004, 304, 1808-1810.	6.0	221
106	Control of T Cell Viability. Annual Review of Immunology, 2004, 22, 765-787.	9.5	329
107	An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder. Blood, 2004, 104, 735-743.	0.6	591
108	Mimotopes for Alloreactive and Conventional T Cells in a Peptide–MHC Display Library. PLoS Biology, 2004, 2, e90.	2.6	64

#	Article	IF	CITATIONS
109	Mast cell–dependent migration of effector CD8+ T cells through production of leukotriene B4. Nature Immunology, 2003, 4, 974-981.	7.0	259
110	The Structure of a Bcl-xL/Bim Fragment Complex. Immunity, 2003, 19, 341-352.	6.6	335
111	Components of the Ligand for a Ni++ Reactive Human T Cell Clone. Journal of Experimental Medicine, 2003, 197, 567-574.	4.2	102
112	Control of Bcl-2 expression by reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15035-15040.	3.3	219
113	Negative selection imparts peptide specificity to the mature T cell repertoire. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11565-11570.	3.3	65
114	T cell apoptosis and reactive oxygen species. Journal of Clinical Investigation, 2003, 111, 575-581.	3.9	134
115	CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8832-8837.	3.3	212
116	Alternate interactions define the binding of peptides to the MHC molecule IAb. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8820-8825.	3.3	72
117	Structural Basis of Cytochrome c Presentation by IEk. Journal of Experimental Medicine, 2002, 195, 1043-1052.	4.2	44
118	Activated T Cell Death In Vivo Mediated by Proapoptotic Bcl-2 Family Member Bim. Immunity, 2002, 16, 759-767.	6.6	514
119	RANTES Production by Memory Phenotype T Cells Is Controlled by a Posttranscriptional, TCR-Dependent Process. Immunity, 2002, 17, 605-615.	6.6	118
120	Xenografts of MHC-Deficient Mouse Embryonic Mesencephalon Improve Behavioral Recovery in Hemiparkinsonian Rats. Cell Transplantation, 2002, 11, 5-16.	1.2	10
121	T cells down-modulate peptide-MHC complexes on APCs in vivo. Nature Immunology, 2002, 3, 27-32.	7.0	219
122	Stronger Correlation of bclâ€3 than bclâ€2, bclâ€x _L , Costimulation, or Antioxidants with Adjuvantâ€Induced T Cell Survival. Annals of the New York Academy of Sciences, 2002, 975, 114-131.	1.8	25
123	Some Properties of T Cells in Animals. Advances in Experimental Medicine and Biology, 2002, 512, 121-128.	0.8	2
124	Mutations Changing the Kinetics of Class II MHC Peptide Exchange. Immunity, 2001, 14, 513-522.	6.6	20
125	A Novel Family of Retroviral Vectors for the Rapid Production of Complex Stable Cell Lines. Analytical Biochemistry, 2001, 297, 86-93.	1.1	20
126	Observation of Antigen-Dependent CD8+ T-Cell/ Dendritic Cell Interactions in Vivo. Cellular Immunology, 2001, 214, 110-122.	1.4	401

#	Article	IF	CITATIONS
127	Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nature Immunology, 2001, 2, 397-402.	7.0	209
128	Autoimmune disease: why and where it occurs. Nature Medicine, 2001, 7, 899-905.	15.2	500
129	The Growth of the Very Large CD8+ T Cell Clones in Older Mice Is Controlled by Cytokines. Journal of Immunology, 2001, 166, 2186-2193.	0.4	73
130	Production and Characterization of T Cell Hybridomas. , 2000, 134, 185-193.		19
131	Genomic-scale analysis of gene expression in resting and activated T cells. Current Opinion in Immunology, 2000, 12, 206-209.	2.4	54
132	Homeostasis of $\hat{I} \pm \hat{I}^2$ TCR+ T cells. Nature Immunology, 2000, 1, 107-111.	7.0	239
133	Activation-Induced Inhibition of Interleukin 6–Mediated T Cell Survival and Signal Transducer and Activator of Transcription 1 Signaling. Journal of Experimental Medicine, 2000, 191, 915-926.	4.2	87
134	T Cells Compete for Access to Antigen-Bearing Antigen-Presenting Cells. Journal of Experimental Medicine, 2000, 192, 1105-1114.	4.2	397
135	Control of Homeostasis of CD8+ Memory T Cells by Opposing Cytokines. Science, 2000, 288, 675-678.	6.0	776
136	Cd4+ T Cell Division in Irradiated Mice Requires Peptides Distinct from Those Responsible for Thymic Selection. Journal of Experimental Medicine, 1999, 190, 367-374.	4.2	150
137	Type I Interferons Keep Activated T Cells Alive. Journal of Experimental Medicine, 1999, 189, 521-530.	4.2	698
138	Live Cell Fluorescence Imaging of T Cell MEKK2. Immunity, 1999, 11, 411-421.	6.6	50
139	T-cell survival. Immunological Reviews, 1998, 165, 279-285.	2.8	63
140	Detection of Antigen-Specific T Cells with Multivalent Soluble Class II MHC Covalent Peptide Complexes. Immunity, 1998, 8, 675-682.	6.6	440
141	Crystal Structure of Mouse H2-M. Immunity, 1998, 9, 385-393.	6.6	89
142	Influence of the NH2-terminal Amino Acid of the T Cell Receptor α Chain on Major Histocompatibility Complex (MHC) Class II + Peptide Recognition. Journal of Experimental Medicine, 1997, 185, 1919-1927.	4.2	25
143	Transcytosis of Staphylococcal Superantigen Toxins. Journal of Experimental Medicine, 1997, 185, 1447-1454.	4.2	120
144	Interleukin 4 (IL-4) or IL-7 Prevents the Death of Resting T Cells: Stat6 Is Probably Not Required for the Effect of IL-4. Journal of Experimental Medicine, 1997, 186, 325-330.	4.2	282

#	Article	IF	CITATIONS
145	Characteristics and maintenance of CD8+ T-cell clones found in old mice. Mechanisms of Ageing and Development, 1997, 94, 41-53.	2.2	13
146	T Cells Can Be Activated by Peptides That Are Unrelated in Sequence to Their Selecting Peptide. Immunity, 1997, 7, 179-186.	6.6	111
147	Selection of Antigen-specific T Cells by a Single IEk Peptide Combination. Journal of Experimental Medicine, 1997, 186, 1441-1450.	4.2	50
148	CD8+ T-cell clones in old mice. Immunological Reviews, 1997, 160, 139-144.	2.8	54
149	Positive selection of thymocytes bearing $\hat{I}\pm\hat{I}^2$ T cell receptors. Current Opinion in Immunology, 1997, 9, 250-255.	2.4	105
150	The Repertoire of T Cells Shaped by a Single MHC/Peptide Ligand. Cell, 1996, 84, 521-529.	13.5	395
151	The 9th international congress of immunology: the view from the hill. Trends in Immunology, 1995, 16, 305.	7.5	2
152	Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity, 1995, 2, 261-270.	6.6	230
153	Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Immunity, 1995, 3, 187-196.	6.6	111
154	A little of what you fancy Nature, 1994, 368, 397-398.	13.7	26
155	Production of soluble MHC class II proteins with covalently bound single peptides. Nature, 1994, 369, 151-154.	13.7	292
156	Subversion of the immune system by pathogens. Cell, 1994, 76, 323-332.	13.5	212
157	Tissue-Specific Expression of Self Peptides Bound by Major Histocompatibility Complex Class II Molecules. Chemical Immunology and Allergy, 1993, 57, 88-112.	1.7	1
158	Death and T Cells. Immunological Reviews, 1993, 133, 119-129.	2.8	43
159	The Bacterial and Mouse Mammary Tumor Virus Superantigens; Two Different Families of Proteins with the Same Functions. Immunological Reviews, 1993, 131, 79-92.	2.8	93
160	Superantigens and Their Potential Role in Human Disease. Advances in Immunology, 1993, 54, 99-166.	1.1	582
161	T Cell Tolerance. Chest, 1993, 103, 76S-78S.	0.4	0
162	Tissue-Specific Expression of Self Peptides Bound by Major Histocompatibility Complex Class II Molecules. Chemical Immunology and Allergy, 1993, 57, 88-112.	1.7	3

#	Article	IF	CITATIONS
163	T Cell Repertoire and Tolerance. , 1993, , 129-136.		1
164	Detection and biochemical characterization of the mouse mammary tumor virus 7 superantigen (Mls-1a). Cell, 1992, 71, 719-730.	13.5	99
165	Superantigens: Mechanism of T-Cell Stimulation and Role in Immune Responses. Annual Review of Immunology, 1991, 9, 745-772.	9.5	793
166	Analysis of class II MHC structure in thymic nurse cells. Cellular Immunology, 1991, 138, 413-422.	1.4	8
167	A maternally inherited superantigen encoded by a mammary tumour virus. Nature, 1991, 349, 524-526.	13.7	342
168	A superantigen encoded in the open reading frame of the 3′ long terminal repeat of mouse mammary tumour virus. Nature, 1991, 350, 203-207.	13.7	404
169	Multiple Mechanisms of T Cell Tolerance to Mls-la. Advances in Experimental Medicine and Biology, 1991, 292, 159-165.	0.8	1
170	A role for clonal inactivation in T cell tolerance to Mis-1a. Nature, 1990, 345, 540-542.	13.7	169
171	Residues of the variable region of the T-cell-receptor β-chain that interact with S. aureus toxin superantigens. Nature, 1990, 346, 471-473.	13.7	303
172	The T Cell Receptors. Chemical Immunology and Allergy, 1990, 49, 69-81.	1.7	3
173	Identification of the region of T cell receptor β chain that interacts with the self-superantigen MIs-1a. Cell, 1990, 61, 1365-1374.	13.5	249
174	Superantigens interact with MHC class II molecules outside of the antigen groove. Cell, 1990, 62, 1115-1121.	13.5	452
175	Tolerance to Self Antigens Shapes the T-Cell Repertoire. Immunological Reviews, 1989, 107, 125-140.	2.8	58
176	Presentation of antigen, foreign major histocompatibility complex proteins and self by thymus cortical epithelium. Nature, 1989, 338, 503-505.	13.7	78
177	The thymus has two functionally distinct populations of immature αβ+ T cells: One population is deleted by ligation of αβTCR. Cell, 1989, 58, 1047-1054.	13.5	142
178	The VÎ ² -specific superantigen staphylococcal enterotoxin B: Stimulation of mature T cells and clonal deletion in neonatal mice. Cell, 1989, 56, 27-35.	13.5	1,082
179	T-Cell Specificity and Repertoire. Immunological Reviews, 1988, 101, 5-19.	2.8	72
180	T cells can distinguish between allogeneic major histocompatibility complex products on different cell types. Nature, 1988, 332, 840-843.	13.7	245

#	Article	IF	CITATIONS
181	The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. Nature, 1988, 335, 796-801.	13.7	494
182	The T-cell repertoire for antigen and MHC. Trends in Immunology, 1988, 9, 308-315.	7.5	168
183	Compartmentalization of MHC class II gene expression in transgenic mice. Cell, 1988, 53, 357-370.	13.5	210
184	The effect of thymus environment on T cell development and tolerance. Cell, 1988, 53, 627-634.	13.5	316
185	T cell tolerance by clonal elimination in the thymus. Cell, 1987, 49, 273-280.	13.5	2,161
186	A T cell receptor VÎ ² segment that imparts reactivity to a class II major histocompatibility complex product. Cell, 1987, 49, 263-271.	13.5	416
187	Both immature and mature T cells mobilize Ca2+ in response to antigen receptor crosslinking. Nature, 1987, 330, 179-181.	13.7	90
188	The T Cell Receptor: Its Repertoire and Role in Thymocyte Development. Advances in Experimental Medicine and Biology, 1987, 213, 1-12.	0.8	3
189	The T cell repertoire may be biased in favor of MHC recognition. Cell, 1986, 47, 349-357.	13.5	119
190	The Antigen-Specific, Major Histocompatibility Complex-Restricted Receptor on T Cells. Advances in Immunology, 1986, 38, 1-30.	1.1	181
191	The T Cell and its Receptor. Scientific American, 1986, 254, 36-45.	1.0	40
192	Immunology: Development and modification of the lymphocyte repertoire. Nature, 1986, 321, 116-117.	13.7	9
193	The role of LFA-1 in class II restricted, antigen-specific T-cell responses. Cellular Immunology, 1986, 103, 73-83.	1.4	8
194	Expression of the Antigen-Specific MHC-Restricted T Cell Receptor. , 1986, , 152-161.		0
195	Effect of prostaglandin E2 on the \hat{I}^3 -interferon induction of antigen-presenting ability in P388D1 cells and on IL-2 production by T-cell hybridomas. Cellular Immunology, 1985, 90, 154-166.	1.4	36
196	Expression of antigen-specific, major histocompatibility complex-restricted receptors by cortical and medullary thymocytes in situ. Cell, 1985, 43, 543-550.	13.5	105
197	The Murine T Cell Receptor. , 1985, , 15-23.		0
198	Immunology: More on the T-cell receptor. Nature, 1984, 309, 310-311.	13.7	7

#	Article	IF	CITATIONS
199	Role of Î ³ -interferon in antibody-producing responses. Nature, 1984, 309, 799-801.	13.7	206
200	Immunoglobulin-like nature of the α-chain of a human T-cell antigen/MHC receptor. Nature, 1984, 312, 65-67.	13.7	82
201	Primary structure of human T-cell receptor α-chain. Nature, 1984, 312, 771-775.	13.7	257
202	Biochemistry and Distribution of the T Cell Receptor. Immunological Reviews, 1984, 81, 161-176.	2.8	22
203	The major histocompatibility complex-restricted antigen receptor on T cells: Distribution on thymus and peripheral T cells. Cell, 1984, 38, 577-584.	13.5	211
204	The capacity of murine alveolar macrophages to stimulate antigen-dependent T-lymphocyte activation and proliferation. Cellular Immunology, 1983, 79, 374-382.	1.4	14
205	The major histocompatibility complex-restricted antigen receptor on T cells in mouse and man: Identification of constant and variable peptides. Cell, 1983, 35, 295-302.	13.5	200
206	The mouse T cell receptor: Comparison of MHC-restricted receptors on two T cell hybridomas. Cell, 1983, 34, 727-737.	13.5	219
207	Functions of Helper T Cell Hybridomas in B Cell Antibody Responses. , 1983, , 485-489.		0
208	Nonspecific Factors in B Cell Responses. Immunological Reviews, 1982, 63, 33-49.	2.8	51
209	Properties of Antigen-Specific H-2 Restricted T Cell Hybridomas. , 1982, , 119-126.		12
210	IR GENES AND I REGION RESTRICTION. , 1980, , 311-313.		0
211	Functions of Two Helper T Cells Distinguished by Anti-Ia Antisera. , 1980, , 221-232.		0
212	SOLUBLE EFFECTORS, MEDIATORS, AND FACTORS AND THEIR MECHANISMS OF ACTION. , 1980, , 379-382.		0
213	THE ROLE OF ANTIGEN-PRESENTING CELLS IN EFFECTOR HELPER T CELL ACTION. , 1980, , 123-139.		2
214	TWO T CELL SIGNALS ARE REQUIRED FOR THE B CELL RESPONSE TO PROTEIN-BOUND ANTIGENS. , 1979, , 373-382.		1
215	Antigen-specific and nonspecific mediators of T-cell/B-cell cooperation. Cellular Immunology, 1977, 33, 20-32.	1.4	2
216	Suppressor T-cell inactivation of a helper T-cell factor. Nature, 1977, 265, 57-59.	13.7	22

#	Article	IF	CITATIONS
217	Anti-la inhibits the activity of B cells but not a T cell-derived helper mediator. Immunogenetics, 1977, 4, 541-555.	1.2	10
218	Characterization and mode of action of a nonspecific T-cell-derived helper mediator. Cellular Immunology, 1976, 27, 334-335.	1.4	1
219	Helper T-cells recognize antigen and components of the macrophage surface membrane simultaneously. Cellular Immunology, 1976, 27, 344.	1.4	0
220	T-cells with different functions have different sensitivities to antigen. Cellular Immunology, 1976, 27, 344-345.	1.4	0