
Zdenek Zalud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8082694/publications.pdf

Version: 2024-02-01

ΖΠΕΝΕΚ ΖΛΙΙΙΠ

#	Article	IF	CITATIONS
1	Adverse weather conditions for European wheat production will become more frequent with climate change, 2014, 4, 637-643.	8.1	452
2	Agroclimatic conditions in Europe under climate change. Global Change Biology, 2011, 17, 2298-2318.	4.2	315
3	Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecological Modelling, 2004, 171, 223-246.	1.2	226
4	Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 2009, 96, 155-171.	1.3	191
5	Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest Meteorology, 2009, 149, 431-442.	1.9	179
6	Global solar radiation in Central European lowlands estimated by various empirical formulae. Agricultural and Forest Meteorology, 2005, 131, 54-76.	1.9	160
7	A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios. Agricultural Water Management, 2003, 61, 195-217.	2.4	113
8	High-Frequency and Low-Frequency Variability in Stochastic Daily Weather Generator and Its Effect on Agricultural and Hydrologic Modelling. Climatic Change, 2004, 63, 145-179.	1.7	112
9	European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate. Ecological Modelling, 2007, 207, 61-84.	1.2	100
10	Climate Change Impacts and Adaptation Strategies in Spring Barley Production in the Czech Republic. Climatic Change, 2004, 64, 227-255.	1.7	76
11	Use of a soil moisture network for drought monitoring in the Czech Republic. Theoretical and Applied Climatology, 2012, 107, 99-111.	1.3	73
12	The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agricultural and Forest Meteorology, 2009, 149, 913-919.	1.9	71
13	Consequences of climate change for the soil climate in Central Europe and the central plains of the United States. Climatic Change, 2013, 120, 405-418.	1.7	69
14	Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 2016, 70, 143-160.	0.4	69
15	Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology, 2004, 77, 229-249.	1.3	68
16	Regional climate change impacts on agricultural crop production in Central and Eastern Europe – hotspots, regional differences and common trends. Journal of Agricultural Science, 2013, 151, 787-812.	0.6	68
17	Simple snow cover model for agrometeorological applications. Agricultural and Forest Meteorology, 2010, 150, 1115-1127.	1.9	66
18	Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agricultural Water Management, 2011, 98, 1249-1261.	2.4	63

#	Article	IF	CITATIONS
19	Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 3733-3747.	1.5	61
20	Expected changes in agroclimatic conditions in Central Europe. Climatic Change, 2011, 108, 261-289.	1.7	55
21	Could the changes in regional crop yields be a pointer of climatic change?. Agricultural and Forest Meteorology, 2012, 166-167, 62-71.	1.9	55
22	Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 2020, 40, 5941-5958.	1.5	55
23	Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central Europe. International Journal of Biometeorology, 2010, 54, 99-111.	1.3	54
24	Sensitivity of Ceres-Maize Yields to Statistical Structure of Daily Weather Series. Climatic Change, 2000, 46, 447-472.	1.7	53
25	The extreme drought episode of August 2011–May 2012 in the Czech Republic. International Journal of Climatology, 2015, 35, 3335-3352.	1.5	53
26	Developing a regional drought climatology for the Czech Republic. International Journal of Climatology, 2009, 29, 863-883.	1.5	51
27	Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. Journal of Agricultural Science, 2011, 149, 185-195.	0.6	51
28	Impact of climate change on the occurrence and activity of harmful organisms. Plant Protection Science, 2009, 45, S48-S52.	0.7	48
29	Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Management Science, 2014, 70, 708-715.	1.7	44
30	Evapotranspiration of a high-density poplar stand in comparison with a reference grass cover in the Czech–Moravian Highlands. Agricultural and Forest Meteorology, 2013, 181, 43-60.	1.9	40
31	Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a Czech case study. Climate Research, 2016, 70, 231-249.	0.4	40
32	Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, 2010, 148, 639-656.	0.6	39
33	Modelling climate change impacts on maize growth and development in the Czech Republic. Theoretical and Applied Climatology, 2002, 72, 85-102.	1.3	37
34	Biomass production and survival rates of selected poplar clones grown under a short-rotation on arable land. Plant, Soil and Environment, 2008, 54, 78-88.	1.0	37
35	Drivers of soil drying in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 2664-2675.	1.5	37
36	Effect of Estimated Daily Global Solar Radiation Data on the Results of Crop Growth Models. Sensors, 2007, 7, 2330-2362.	2.1	35

#	Article	IF	CITATIONS
37	Priority questions in multidisciplinary drought research. Climate Research, 2018, 75, 241-260.	0.4	35
38	Impacts of water availability and drought on maize yield – A comparison of 16 indicators. Agricultural Water Management, 2017, 188, 126-135.	2.4	32
39	Agricultural drought and spring barley yields in the Czech Republic. Plant, Soil and Environment, 2007, 53, 306-316.	1.0	30
40	Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. Journal of Hydrology, 2020, 590, 125390.	2.3	29
41	Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic. Journal of Agricultural Science, 2014, 152, 188-204.	0.6	27
42	Drought reconstruction based on grape harvest dates for the Czech Lands, 1499-2012. Climate Research, 2016, 70, 119-132.	0.4	26
43	Climate-driven changes of production regions in Central Europe. Plant, Soil and Environment, 2009, 55, 257-266.	1.0	24
44	Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods. Agricultural Water Management, 2018, 209, 249-263.	2.4	21
45	A 200-year climate record in Central Europe: implications for agriculture. Agronomy for Sustainable Development, 2011, 31, 631-641.	2.2	20
46	Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant, Soil and Environment, 2021, 67, 154-163.	1.0	20
47	Evaluating SHOOTCRO 4.0 as a potential winter wheat management tool in the Czech Republic. European Journal of Agronomy, 2003, 19, 495-507.	1.9	17
48	Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe. Agricultural and Forest Meteorology, 2018, 250-251, 343-360.	1.9	17
49	Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P.) Tj ETQq1 1 0.7 Silviculturae Mendelianae Brunensis, 2014, 59, 141-152.	84314 rgB 0.2	T /Overlock 1 14
50	Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Climate Research, 2015, 65, 175-192.	0.4	13
51	Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction – Estimating future drought impacts. Biomass and Bioenergy, 2018, 109, 182-189.	2.9	12
52	Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe. Journal of Agricultural Science, 2021, 159, 69-89.	0.6	11
53	Sensitivity analysis of soil hydrologic parameters for two crop growth simulation models. Soil and Tillage Research, 1999, 50, 305-318.	2.6	10
54	Climate change impacts on selected aspects of the Czech agricultural production. Plant Protection Science, 2009, 45, S11-S19.	0.7	10

#	Article	IF	CITATIONS
55	Observed and estimated consequences of climate change for the fire weather regime in the moist-temperate climate of the Czech Republic. Agricultural and Forest Meteorology, 2021, 310, 108583.	1.9	10
56	Comparison of two mapping methods of potential distribution of pests under present and changed climate. Plant Protection Science, 2008, 44, 49-56.	0.7	9
57	Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic. Agricultural Water Management, 2021, 256, 107064.	2.4	9
58	Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe. Agricultural and Forest Meteorology, 2022, 315, 108808.	1.9	9
59	Weather and climate and optimization of farm technologies at different input levels. , 2007, , 141-170.		8
60	Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Climate Research, 2020, 82, 33-54.	0.4	8
61	Estimating Crop Yields at the Field Level Using Landsat and MODIS Products. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2018, 66, 1141-1150.	0.2	7
62	Meteorological Variables That Affect the Beginning of Flowering of the Winter Oilseed Rape in the Czech Republic. Atmosphere, 2021, 12, 1444.	1.0	7
63	Phenological differences among selected residents and long-distance migrant bird species in central Europe. International Journal of Biometeorology, 2014, 58, 809-817.	1.3	6
64	Climate variability and potential distribution of selected pest species in south Moravia and north-east Austria in the past 200 years – lessons for the future. Journal of Agricultural Science, 2014, 152, 225-237.	0.6	6
65	Calibration and Validation of the Crop Growth Model DAISY for Spring Barley in the Czech Republic. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2015, 63, 1177-1186.	0.2	6
66	Evaluating drought risk for permanent grasslands under present and future climate conditions. Procedia Environmental Sciences, 2011, 3, 50-57.	1.3	4
67	Long-term comparison of temperature measurements by the multi-plate shield and Czech-Slovak thermometer screen. Meteorologische Zeitschrift, 2012, 21, 125-133.	0.5	4
68	Climatic factors and their influence on onset and duration of phenological phases of chosen plants at locations south Moravia during 1961-2007. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 58, 35-44.	0.2	4
69	Pest occurrence model in current climate - validation study for European domain. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 61, 205-214.	0.2	4
70	Trends in temperature and precipitation in the period of 1961-2010 in ŽabÄɨce locality. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 61, 1521-1531.	0.2	4
71	ls Crop Growth Model Able to Reproduce Drought Stress Caused by Rain-Out Shelters Above Winter Wheat?. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2018, 66, 225-233.	0.2	4
72	Comparison of Methods for the Assessment of Fire Danger in the Czech Republic. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2019, 67, 1285-1295.	0.2	4

#	Article	IF	CITATIONS
73	Droughts and Drought Management in the Czech Republic in a Changing Climate. Drought and Water Crises, 2017, , 461-480.	0.1	4
74	The analysis of long-term phenological data of apricot tree (Prunus armeniaca L.) in southern Moravia during 1927-2009. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 60, 9-18.	0.2	4
75	ANNUAL AND INTRA-ANNUAL WATER BALANCE COMPONENTS OF A SHORT ROTATION POPLAR COPPICE BASED ON SAP FLOW AND MICROMETEOROLOGICAL AND HYDROLOGICAL APPROACHES. Acta Horticulturae, 2013, , 401-408.	0.1	3
76	The change of the potential occurence of Colorado Potato Beetle (Leptinotarsa decemlineata, Say) Tj ETQqO 0 (Brunensis, 2014, 56, 87-94.) rgBT /Ov 0.2	erlock 10 Tf 5 3
77	Evaluation of Indirect Measurement Method of Seasonal Patterns of Leaf Area Index in a High-Density Short Rotation Coppice Culture of Poplar. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2016, 64, 549-556.	0.2	3
78	The Possibility of Consensus Regarding Climate Change Adaptation Policies in Agriculture and Forestry among Stakeholder Groups in the Czech Republic. Environmental Management, 2021, , 1.	1.2	2
79	Empirical model for estimating daily erythemal UV radiation in the Central European region. Meteorologische Zeitschrift, 2007, 16, 183-190.	0.5	1
80	TRANSPIRATION OF POPLAR BASED SHORT ROTATION COPPICE UNDER DROUGHT STRESS. Acta Horticulturae, 2013, , 231-237.	0.1	1
81	Climate Change Impacts on Czech Agriculture. , 0, , .		1
82	Drought - present and future meteorological hazard Kvasný PrÅ⁻mysl, 2006, 52, 230-234.	0.1	1
83	Impacts of climate change on the first occurrence of the Light blight (Phytophthora infestans (Mont.)) Tj ETQq1	1 0,7843 0,2	14 rgBT /Over
84	Vulnerabilities and Adaptation Options of European Agriculture. , 2010, , 139-160.		0
85	Crop model sensitivity to the estimated daily global solar radiation data. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2014, 54, 21-32	0.2	Ο