Erik Walinda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8082533/publications.pdf Version: 2024-02-01

Ερικ Μλιινιολ

#	Article	IF	CITATIONS
1	Cooperative Domain Formation by Homologous Motifs in HOIL-1L and SHARPIN Plays A Crucial Role in LUBAC Stabilization. Cell Reports, 2018, 23, 1192-1204.	6.4	84
2	The unexpected role of polyubiquitin chains in the formation of fibrillar aggregates. Nature Communications, 2015, 6, 6116.	12.8	75
3	Solution Structure of the Ubiquitin-associated (UBA) Domain of Human Autophagy Receptor NBR1 and Its Interaction with Ubiquitin and Polyubiquitin. Journal of Biological Chemistry, 2014, 289, 13890-13902.	3.4	60
4	Effects of Weak Nonspecific Interactions with ATP on Proteins. Journal of the American Chemical Society, 2021, 143, 11982-11993.	13.7	40
5	Tracking the 3D Rotational Dynamics in Nanoscopic Biological Systems. Journal of the American Chemical Society, 2020, 142, 7542-7554.	13.7	34
6	Ubiquitylation Directly Induces Fold Destabilization of Proteins. Scientific Reports, 2016, 6, 39453.	3.3	24
7	High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies. Analytical Chemistry, 2017, 89, 7286-7290.	6.5	19
8	Dual Function of Phosphoubiquitin in E3 Activation of Parkin. Journal of Biological Chemistry, 2016, 291, 16879-16891.	3.4	12
9	F 1 F 2-selective NMR spectroscopy. Journal of Biomolecular NMR, 2017, 68, 41-52.	2.8	11
10	Resolving biomolecular motion and interactions by R2 and R1ï•relaxation dispersion NMR. Methods, 2018, 148, 28-38.	3.8	11
11	Overview of Relaxation Dispersion NMR Spectroscopy to Study Protein Dynamics and Proteinâ€Ligand Interactions. Current Protocols in Protein Science, 2018, 92, e57.	2.8	10
12	Multiple-State Monitoring of SOD1 Amyloid Formation at Single-Residue Resolution by Rheo-NMR Spectroscopy. Journal of the American Chemical Society, 2021, 143, 10604-10613.	13.7	10
13	Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR. International Journal of Molecular Sciences, 2017, 18, 2271.	4.1	9
14	Structural dynamics of double-stranded DNA with epigenome modification. Nucleic Acids Research, 2021, 49, 1152-1162.	14.5	8
15	Transient Diffusive Interactions with a Protein Crowder Affect Aggregation Processes of Superoxide Dismutase 1 Î ² -Barrel. Journal of Physical Chemistry B, 2021, 125, 2521-2532.	2.6	7
16	Structural Insights into Methylated DNA Recognition by the Methyl-CpG Binding Domain of MBD6 from <i>Arabidopsis thaliana</i> . ACS Omega, 2022, 7, 3212-3221.	3.5	7
17	Visualizing protein motion in Couette flow by all-atom molecular dynamics. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129383.	2.4	6
18	Efficient identification and analysis of chemical exchange in biomolecules by <i>R</i> 1i•relaxation dispersion with <i>Amaterasu</i> . Bioinformatics, 2016, 32, 2539-2541.	4.1	5

Erik Walinda

#	Article	IF	CITATIONS
19	Backbone resonance assignments of monomeric SOD1 in dilute and crowded environments. Biomolecular NMR Assignments, 2017, 11, 81-84.	0.8	5
20	Counter-flow phenomena studied by nuclear magnetic resonance (NMR) velocimetry and flow simulations. Physics of Fluids, 2022, 34, .	4.0	5
21	Practical considerations for investigation of protein conformational dynamics by 15N R 1ï•relaxation dispersion. Journal of Biomolecular NMR, 2017, 67, 201-209.	2.8	4
22	Biological and Physicochemical Functions of Ubiquitylation Revealed by Synthetic Chemistry Approaches. International Journal of Molecular Sciences, 2017, 18, 1145.	4.1	4
23	Structural Dynamic Heterogeneity of Polyubiquitin Subunits Affects Phosphorylation Susceptibility. Biochemistry, 2021, 60, 573-583.	2.5	4
24	Pinpoint analysis of a protein in slow exchange using F1F2-selective ZZ-exchange spectroscopy: assignment and kinetic analysis. Journal of Biomolecular NMR, 2020, 74, 205-211.	2.8	3
25	Expression, solubility monitoring, and purification of the co-folded LUBAC LTM domain by structure-guided tandem folding in autoinducing cultures. Protein Expression and Purification, 2021, 187, 105953.	1.3	3
26	Hydrogen-Deuterium Exchange Profiles of Polyubiquitin Fibrils. Polymers, 2018, 10, 240.	4.5	2
27	Rigorous analysis of the interaction between proteins and low water-solubility drugs by qNMR-aided NMR titration experiments. Physical Chemistry Chemical Physics, 2021, 23, 21484-21488.	2.8	2
28	NMR resonance assignments of the NZF domain of mouse HOIL-1L free and bound to linear di-ubiquitin. Biomolecular NMR Assignments, 2019, 13, 149-153.	0.8	1
29	Backbone and side-chain resonance assignments of the methyl-CpC-binding domain of MBD6 from Arabidopsis thaliana. Biomolecular NMR Assignments, 2019, 13, 59-62.	0.8	1
30	Quantitative monitoring of ubiquitination/deubiquitination reaction cycles by 180-incorporation. Biochemical and Biophysical Research Communications, 2020, 529, 418-424.	2.1	1
31	Molecular recognition and deubiquitination of cyclic K48-linked ubiquitin chains by OTUB1. Biochemical and Biophysical Research Communications, 2021, 562, 94-99.	2.1	1
32	Isolation and characterization of a minimal building block of polyubiquitin fibrils. Scientific Reports, 2018, 8, 2711.	3.3	0
33	Backbone resonance assignments of the A2 domain of mouse von Willebrand factor. Biomolecular NMR Assignments, 2021, 15, 427-431.	0.8	0