Jocelyn K C Rose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8082215/publications.pdf

Version: 2024-02-01

143 papers

19,129 citations

9786 73 h-index 133 g-index

206 all docs

206 docs citations

206 times ranked 16792 citing authors

#	Article	IF	CITATIONS
1	Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science, 2006, 313, 1261-1266.	12.6	1,059
2	The Formation and Function of Plant Cuticles. Plant Physiology, 2013, 163, 5-20.	4.8	1,020
3	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	21.4	867
4	The XTH Family of Enzymes Involved in Xyloglucan Endotransglucosylation and Endohydrolysis: Current Perspectives and a New Unifying Nomenclature. Plant and Cell Physiology, 2002, 43, 1421-1435.	3.1	679
5	Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato <i>SHATTERPROOF</i> Gene <i>TAGL1</i> À Â. Plant Cell, 2009, 21, 3041-3062.	6.6	415
6	Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends in Plant Science, 1999, 4, 176-183.	8.8	410
7	Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature Protocols, 2006, 1, 769-774.	12.0	401
8	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
9	A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics, 2004, 4, 2522-2532.	2.2	374
10	Fruit Softening: Revisiting the Role of Pectin. Trends in Plant Science, 2018, 23, 302-310.	8.8	364
11	A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiology, 2007, 144, 1012-1028.	4.8	328
12	The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles. Annual Review of Plant Biology, 2016, 67, 207-233.	18.7	308
13	The linkage between cell wall metabolism and fruit softening: looking to the future. Journal of the Science of Food and Agriculture, 2007, 87, 1435-1448.	3.5	303
14	Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (<i>nor, rin</i>) and Ethylene Receptor (<i>Nr</i>) Mutants Reveals Novel Regulatory Interactions Â. Plant Physiology, 2011, 157, 405-425.	4.8	303
15	Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant Journal, 2004, 39, 715-733.	5.7	301
16	<i>Arabidopsis</i> LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein Required for Export of Lipids to the Plant Surface Â. Plant Cell, 2009, 21, 1230-1238.	6.6	295
17	Temporal Sequence of Cell Wall Disassembly in Rapidly Ripening Melon Fruit1. Plant Physiology, 1998, 117, 345-361.	4.8	278
18	The biochemistry and biology of extracellular plant lipidâ€ŧransfer proteins (LTPs). Protein Science, 2008, 17, 191-198.	7.6	256

#	Article	IF	CITATIONS
19	High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications, 2018, 9, 364.	12.8	255
20	Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant Journal, 2009, 60, 363-377.	5.7	253
21	Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 2016, 34, 950-952.	17.5	251
22	Nomenclature for members of the expansin superfamily of genes and proteins. Plant Molecular Biology, 2004, 55, 311-314.	3.9	242
23	Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening Â. Plant Cell, 2011, 23, 162-184.	6.6	227
24	The charophycean green algae provide insights into the early origins of plant cell walls. Plant Journal, 2011, 68, 201-211.	5.7	226
25	ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant Journal, 2004, 39, 697-714.	5.7	225
26	There's more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany, 2013, 65, 4639-4651.	4.8	221
27	Molecular Cloning and Characterization of Glucanase Inhibitor Proteins. Plant Cell, 2002, 14, 1329-1345.	6.6	217
28	The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Molecular Plant, 2018, 11, 776-788.	8.3	205
29	Auxin-Regulated Genes Encoding Cell Wall-Modifying Proteins Are Expressed during Early Tomato Fruit Growth. Plant Physiology, 2000, 122, 527-534.	4.8	200
30	Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4197-4202.	7.1	199
31	A Surprising Diversity and Abundance of Xyloglucan Endotransglucosylase/Hydrolases in Rice. Classification and Expression Analysis. Plant Physiology, 2004, 134, 1088-1099.	4.8	197
32	Tissue- and Cell-Type Specific Transcriptome Profiling of Expanding Tomato Fruit Provides Insights into Metabolic and Regulatory Specialization and Cuticle Formation Â. Plant Cell, 2011, 23, 3893-3910.	6.6	193
33	The identification of cutin synthase: formation of the plant polyester cutin. Nature Chemical Biology, 2012, 8, 609-611.	8.0	186
34	Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant Journal, 2006, 47, 282-295.	5.7	180
35	Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany, 2007, 58, 1281-1290.	4.8	177
36	Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant Journal, 1997, 12, 417-426.	5.7	168

#	Article	IF	CITATIONS
37	Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 ^{A903V} and CESA3 ^{T942I} of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4098-4103.	7.1	165
38	A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Communications, 2017, 8, 14713.	12.8	157
39	Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 2013, 11, 269-278.	8.3	156
40	The tomato <scp>S</scp> l <scp>SHINE</scp> 3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytologist, 2013, 197, 468-480.	7.3	156
41	The Penium margaritaceum Genome: Hallmarks of the Origins of Land Plants. Cell, 2020, 181, 1097-1111.e12.	28.9	153
42	Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION Activates Cell Separation in Vestigial Abscission Zones in Arabidopsis. Plant Cell, 2006, 18, 1467-1476.	6.6	148
43	The Charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signaling and Behavior, 2012, 7, 1-3.	2.4	144
44	Polygalacturonase Gene Expression in Ripe Melon Fruit Supports a Role for Polygalacturonase in Ripening-Associated Pectin Disassembly. Plant Physiology, 1998, 117, 363-373.	4.8	138
45	Catalyzing plant science research with RNA-seq. Frontiers in Plant Science, 2013, 4, 66.	3.6	136
46	Ethylene suppresses tomato (<i>Solanum lycopersicum</i>) fruit set through modification of gibberellin metabolism. Plant Journal, 2015, 83, 237-251.	5.7	128
47	Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Current Opinion in Plant Biology, 2020, 55, 11-20.	7.1	126
48	Detection of Expansin Proteins and Activity during Tomato Fruit Ontogeny. Plant Physiology, 2000, 123, 1583-1592.	4.8	124
49	Threeâ€dimensional imaging of plant cuticle architecture using confocal scanning laser microscopy. Plant Journal, 2009, 60, 378-385.	5.7	118
50	Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Current Opinion in Biotechnology, 2009, 20, 197-203.	6.6	116
51	<scp>T</scp> omato <scp>C</scp> utin <scp>D</scp> eficient 1 (<scp>CD</scp> 1) and putative orthologs comprise an ancient family of cutin synthaseâ€ike (<scp>CUS</scp>) proteins that are conserved among land plants. Plant Journal, 2014, 77, 667-675.	5.7	114
52	A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant Journal, 2010, 62, 357-366.	5.7	112
53	Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sexual Plant Reproduction, 2011, 24, 171-187.	2.2	112
54	Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings. Molecular and Cellular Proteomics, 2012, 11, 1853-1869.	3.8	110

#	Article	IF	Citations
55	Antisense inhibition of a pectate lyase gene supports a role for pectin depolymerization in strawberry fruit softening. Journal of Experimental Botany, 2008, 59, 2769-2779.	4.8	109
56	Activator Mutagenesis of the Pink scutellum1/viviparous7 Locus of Maize. Plant Cell, 2003, 15, 874-884.	6.6	108
57	Limited Correlation between Expansin Gene Expression and Elongation Growth Rate. Plant Physiology, 2000, 123, 1399-1414.	4.8	107
58	Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga <i>Penium margaritaceum </i> Plant Physiology, 2014, 165, 105-118.	4.8	106
59	Differential expression of seven $\hat{l}\pm$ -expansin genes during growth and ripening of pear fruit. Physiologia Plantarum, 2003, 117, 564-572.	5.2	105
60	Two Oxidosqualene Cyclases Responsible for Biosynthesis of Tomato Fruit Cuticular Triterpenoids \hat{A} \hat{A} \hat{A} . Plant Physiology, 2011, 155, 540-552.	4.8	105
61	Structure of the Glucanase Inhibitor Protein (GIP) Family from <i>Phytophthora</i> Species Suggests Coevolution with Plant Endo-β-1,3-Glucanases. Molecular Plant-Microbe Interactions, 2008, 21, 820-830.	2.6	101
62	Straying off the Highway: Trafficking of Secreted Plant Proteins and Complexity in the Plant Cell Wall Proteome. Plant Physiology, 2010, 153, 433-436.	4.8	101
63	An ATP Binding Cassette Transporter Is Required for Cuticular Wax Deposition and Desiccation Tolerance in the Moss <i>Physcomitrella patens</i> Plant Cell, 2013, 25, 4000-4013.	6.6	100
64	Digging deeper into the plant cell wall proteome. Plant Physiology and Biochemistry, 2004, 42, 979-988.	5.8	96
65	The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Plant Journal, 2012, 69, 655-666.	5.7	96
66	Characterization of a tomato protein that inhibits a xyloglucan-specific endoglucanase. Plant Journal, 2003, 34, 327-338.	5.7	95
67	Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum, 2010, 139, 107-117.	5.2	95
68	Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signaling and Behavior, 2010, 5, 769-772.	2.4	89
69	Structural Organization and a Standardized Nomenclature for Plant Endo-1,4- <i>β</i> -Glucanases (Cellulases) of Glycosyl Hydrolase Family 9. Plant Physiology, 2007, 144, 1693-1696.	4.8	86
70	Manipulation of βâ€carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnology Journal, 2020, 18, 1185-1199.	8.3	81
71	Characterization of a Tomato Xyloglucan Endotransglycosylase Gene That Is Down-Regulated by Auxin in Etiolated Hypocotyls. Plant Physiology, 2001, 127, 1180-1192.	4.8	79
72	Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. Journal of Experimental Botany, 2010, 61, 3759-3771.	4.8	77

#	Article	IF	CITATIONS
73	Transcriptional dynamics of <i>Phytophthora infestans</i> during sequential stages of hemibiotrophic infection of tomato. Molecular Plant Pathology, 2016, 17, 29-41.	4.2	77
74	Development and validation of genetic markers for sex and cannabinoid chemotype in <i>Cannabis sativa</i> L GCB Bioenergy, 2020, 12, 213-222.	5.6	77
75	A Functional Screen to Characterize the Secretomes of Eukaryotic Pathogens and Their Hosts In Planta. Molecular Plant-Microbe Interactions, 2006, 19, 1368-1377.	2.6	76
76	The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiology, 2016, 171, pp.00409.2016.	4.8	76
77	Plant glycosyl hydrolases and biofuels: a natural marriage. Current Opinion in Plant Biology, 2008, 11, 329-337.	7.1	75
78	The plot thickens: new perspectives of primary cell wall modification. Current Opinion in Plant Biology, 2004, 7, 296-301.	7.1	71
79	A Tomato Endo-Î ² -1,4-glucanase, SlCel9C1, Represents a Distinct Subclass with a New Family of Carbohydrate Binding Modules (CBM49). Journal of Biological Chemistry, 2007, 282, 12066-12074.	3.4	70
80	Multiple features that distinguish unilateral incongruity and self-incompatibility in the tomato clade. Plant Journal, 2010, 64, 367-378.	5.7	69
81	Expression of ripening-related genes in cold-stored tomato fruit. Postharvest Biology and Technology, 2011, 61, 1-14.	6.0	68
82	Transcriptome Analysis of Mango (Mangifera indica L.) Fruit Epidermal Peel to Identify Putative Cuticle-Associated Genes. Scientific Reports, 2017, 7, 46163.	3.3	68
83	Towards characterization of the glycoproteome of tomato (<i>Solanum lycopersicum)</i> fruit using Concanavalin A lectin affinity chromatography and LCâ€MALDIâ€MS/MS analysis. Proteomics, 2011, 11, 1530-1544.	2.2	65
84	The Tomato Expression Atlas. Bioinformatics, 2017, 33, 2397-2398.	4.1	64
85	Cuticle Biosynthesis in Tomato Leaves Is Developmentally Regulated by Abscisic Acid. Plant Physiology, 2017, 174, 1384-1398.	4.8	63
86	Tissue-specific transcriptome profiling of the citrus fruit epidermis and subepidermis using laser capture microdissection. Journal of Experimental Botany, 2010, 61, 3321-3330.	4.8	62
87	Enabling proteomic studies with RNAâ€Seq: The proteome of tomato pollen as a test case. Proteomics, 2012, 12, 761-774.	2.2	62
88	Cloning, expression and characterization of a family-74 xyloglucanase fromThermobifidaâ€∫fusca. FEBS Journal, 2003, 270, 3083-3091.	0.2	61
89	Expansin protein levels decline with the development of mealiness in peaches. Postharvest Biology and Technology, 2003, 29, 11-18.	6.0	59
90	Dissecting the molecular signatures of apical cellâ€type shoot meristems from two ancient land plant lineages. New Phytologist, 2015, 207, 893-904.	7.3	59

#	Article	IF	Citations
91	CUTIN SYNTHASE 2 Maintains Progressively Developing Cuticular Ridges in Arabidopsis Sepals. Molecular Plant, 2017, 10, 560-574.	8.3	58
92	Proteinaceous inhibitors of endo- \hat{l}^2 -glucanases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 223-233.	2.3	57
93	A relationship between tomato fruit softening, cuticle properties and water availability. Food Chemistry, 2019, 295, 300-310.	8.2	57
94	A Comparative Study of Lectin Affinity Based Plant N-Glycoproteome Profiling Using Tomato Fruit as a Model. Molecular and Cellular Proteomics, 2014, 13, 566-579.	3.8	55
95	Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2016, 17, 42-54.	4.2	55
96	Cell wall metabolism in cold-stored tomato fruit. Postharvest Biology and Technology, 2010, 57, 106-113.	6.0	52
97	Stable transformation and reverse genetic analysis of <i><scp>P</scp>enium margaritaceum</i> : a platform for studies of charophyte green algae, the immediate ancestors of land plants. Plant Journal, 2014, 77, 339-351.	5.7	52
98	Cell wall composition profiling of parasitic giant dodder (<i><scp>C</scp>uscuta reflexa</i>) and its hosts: <i>a priori</i> differences and induced changes. New Phytologist, 2015, 207, 805-816.	7.3	52
99	Developmental onset of reproductive barriers and associated proteome changes in stigma/styles of <i>Solanum pennellii</i>). Journal of Experimental Botany, 2013, 64, 265-279.	4.8	50
100	Seasonâ€long characterization of highâ€cannabinoid hemp (<i>Cannabis sativa</i> L.) reveals variation in cannabinoid accumulation, flowering time, and disease resistance. GCB Bioenergy, 2021, 13, 546-561.	5.6	50
101	The respiratory climacteric is present in Charentais (Cucumis melocv. Reticulatus F1 Alpha) melons ripened on or off the plant. Journal of Experimental Botany, 1995, 46, 1923-1925.	4.8	48
102	The Secreted Plant N-Glycoproteome and Associated Secretory Pathways. Frontiers in Plant Science, 2012, 3, 117.	3.6	47
103	Natural Variation Underlies Differences in ETHYLENE RESPONSE FACTOR17 Activity in Fruit Peel Degreening. Plant Physiology, 2018, 176, 2292-2304.	4.8	47
104	Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. Plant Cell, 2021, 33, 1472-1491.	6.6	45
105	Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts. Proteomics, 2012, 12, 1269-1288.	2.2	41
106	The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in <i>Artemisia annua</i> . Journal of Experimental Botany, 2021, 72, 1691-1701.	4.8	41
107	An HDâ€ZIPâ€MYB complex regulates glandular secretory trichome initiation in <i>Artemisia annua</i> New Phytologist, 2021, 231, 2050-2064.	7.3	41
108	A tomato LATERAL ORGAN BOUNDARIES transcription factor, $\langle i \rangle SILOB1 \langle i \rangle$, predominantly regulates cell wall and softening components of ripening. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	41

#	Article	IF	Citations
109	Application of wide selectedâ€ion monitoring dataâ€independent acquisition to identify tomato fruit proteins regulated by the CUTIN DEFICIENT2 transcription factor. Proteomics, 2016, 16, 2081-2094.	2.2	40
110	Genetic and metabolic effects of ripening mutations and vine detachment on tomato fruit quality. Plant Biotechnology Journal, 2020, 18, 106-118.	8.3	39
111	Use of a Secretion Trap Screen in Pepper Following <i>Phytophthora capsici </i> Infection Reveals Novel Functions of Secreted Plant Proteins in Modulating Cell Death. Molecular Plant-Microbe Interactions, 2011, 24, 671-684.	2.6	38
112	Limited effect of environmental stress on cannabinoid profiles in high annabidiol hemp (<i>Cannabis) Tj ETQq0</i>	0 0 0 rgBT	/Qverlock 10
113	Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Nature Protocols, 2006, 1, 2439-2447.	12.0	30
114	The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 2014, 93, 114-121.	6.0	29
115	Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression. Communications Biology, 2020, 3, 432.	4.4	29
116	Apple Ripening Is Controlled by a NAC Transcription Factor. Frontiers in Genetics, 2021, 12, 671300.	2.3	29
117	Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling. Nature Protocols, 2016, 11, 2376-2388.	12.0	28
118	TATA Box Insertion Provides a Selection Mechanism Underpinning Adaptations to Fe Deficiency. Plant Physiology, 2017, 173, 715-727.	4.8	27
119	A Yeast Secretion Trap Assay for Identification of Secreted Proteins from Eukaryotic Phytopathogens and Their Plant Hosts. Methods in Molecular Biology, 2012, 835, 519-530.	0.9	25
120	Solid-State ¹³ C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles. Biomacromolecules, 2016, 17, 215-224.	5.4	25
121	Identification of tomato introgression lines with enhanced susceptibility or resistance to infection by parasitic giant dodder (<scp><i>Cuscuta reflexa</i></scp>). Physiologia Plantarum, 2018, 162, 205-218.	5.2	22
122	A coupled yeast signal sequence trap and transient plant expression strategy to identify genes encoding secreted proteins from peach pistils. Journal of Experimental Botany, 2005, 56, 2229-2238.	4.8	21
123	Progress toward the tomato fruit cell wall proteome. Frontiers in Plant Science, 2013, 4, 159.	3.6	20
124	The tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 gene contributes to regulation of fruit ripening. Horticulture Research, 2019, 6, 15.	6.3	20
125	Experimental Manipulation of Pectin Architecture in the Cell Wall of the Unicellular Charophyte, Penium Margaritaceum. Frontiers in Plant Science, 2020, 11, 1032.	3.6	19
126	Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus. Frontiers in Plant Science, 2016, 7, 566.	3.6	18

#	Article	IF	CITATIONS
127	Morphometric relationships and their contribution to biomass and cannabinoid yield in hybrids of hemp (<i>Cannabis sativa</i>). Journal of Experimental Botany, 2021, 72, 7694-7709.	4.8	18
128	Characterization of a Tomato Xyloglucan Endotransglycosylase Gene That Is Down-Regulated by Auxin in Etiolated Hypocotyls. Plant Physiology, 2001, 127, 1180-1192.	4.8	18
129	The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes. Proteomes, 2018, 6, 14.	3.5	17
130	Glycerolâ€3â€phosphate acyltransferase 6 controls filamentous pathogen interactions and cell wall properties of the tomato and <i>Nicotiana benthamiana</i> leaf epidermis. New Phytologist, 2019, 223, 1547-1559.	7.3	17
131	The Tomato Guanylate-Binding Protein SIGBP1 Enables Fruit Tissue Differentiation by Maintaining Endopolyploid Cells in a Non-Proliferative State. Plant Cell, 2020, 32, 3188-3205.	6.6	17
132	Transpiration from Tomato Fruit Occurs Primarily via Trichome-Associated Transcuticular Polar Pores. Plant Physiology, 2020, 184, 1840-1852.	4.8	16
133	Callose deposition is essential for the completion of cytokinesis in the unicellular alga, <i>Penium margaritaceum</i> . Journal of Cell Science, 2020, 133, .	2.0	13
134	Trafficking Processes and Secretion Pathways Underlying the Formation of Plant Cuticles. Frontiers in Plant Science, 2021, 12, 786874.	3.6	13
135	Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. Journal of Experimental Botany, 2020, 71, 3323-3339.	4.8	9
136	Isolation and manipulation of protoplasts from the unicellular green alga Penium margaritaceum. Plant Methods, $2018,14,.$	4.3	8
137	Surveying the Plant Cell Wall Proteome, or Secretome. , 0, , 185-209.		7
138	Mining secreted proteins that function in pepper fruit development and ripening using a yeast secretion trap (YST). Biochemical and Biophysical Research Communications, 2014, 446, 882-888.	2.1	5
139	Synthesis and Oligomerization of 10,16â€Dihydroxyhexadecanoyl Esters with Different Headâ€Groups for the Study of CUS1 Selectivity. European Journal of Organic Chemistry, 2019, 2019, 5704-5708.	2.4	5
140	Characterization of the Plant Cell Wall Proteome Using High-Throughput Screens. Methods in Molecular Biology, 2011, 715, 255-272.	0.9	4
141	Biochemical and physiological flexibility accompanies reduced cellulose biosynthesis in Brachypodium cesa1S830N. AoB PLANTS, 2019, 11, plz041.	2.3	2
142	Plant Proteomics., 0,,.		0
143	GENE EXPRESSION AND ACTIVITIES OF CELL WALL-ASSOCIATED ENZYMES IN COLD-STORED TOMATO FRUIT. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 494C-494.	1.0	0