Ingrid Fleming

List of Publications by Citations

Source: https://exaly.com/author-pdf/8081917/ingrid-fleming-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

321 papers

24,218 citations

h-index

146 g-index

351 ext. papers

26,353 ext. citations

8.7 avg, IF

L-index

#	Paper	IF	Citations
321	Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. <i>Nature</i> , 1999 , 399, 601-5	50.4	2980
320	Cytochrome P450 2C is an EDHF synthase in coronary arteries. <i>Nature</i> , 1999 , 401, 493-7	50.4	784
319	EDHF: bringing the concepts together. <i>Trends in Pharmacological Sciences</i> , 2002 , 23, 374-80	13.2	664
318	Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2003 , 284, R1-12	3.2	653
317	Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. <i>Circulation Research</i> , 2001 , 88, E68-75	15.7	526
316	Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. <i>Circulation</i> , 2003 , 107, 1024-32	16.7	472
315	Endothelial aging. Cardiovascular Research, 2005, 66, 286-94	9.9	427
314	Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. <i>Circulation Research</i> , 2001 , 88, 44-51	15.7	371
313	Cytochrome p450 and vascular homeostasis. <i>Circulation Research</i> , 2001 , 89, 753-62	15.7	323
312	Signal transduction of eNOS activation. <i>Cardiovascular Research</i> , 1999 , 43, 532-41	9.9	318
311	Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. <i>Circulation</i> , 1996 , 94, 3341-7	16.7	314
310	Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. <i>Circulation Research</i> , 2005 , 97, 908-15	15.7	301
309	Molecular mechanisms underlying the activation of eNOS. <i>Pflugers Archiv European Journal of Physiology</i> , 2010 , 459, 793-806	4.6	298
308	Activation and signaling by the AMP-activated protein kinase in endothelial cells. <i>Circulation Research</i> , 2009 , 105, 114-27	15.7	255
307	Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2000 , 436, 257-70) ^{5.1}	254
306	Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. <i>Journal of Cell Science</i> , 2005 , 118, 4103-11	5.3	235
305	An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> ,	11.5	230

304	Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. <i>Circulation Research</i> , 1998 , 82, 686-95	15.7	223	
303	Pulsatile stretch and shear stress: physical stimuli determining the production of endothelium-derived relaxing factors. <i>Journal of Vascular Research</i> , 1998 , 35, 73-84	1.9	211	
302	Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. <i>Acta Physiologica Scandinavica</i> , 2000 , 168, 81-8		208	
301	Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. <i>Circulation Research</i> , 1996 , 78, 750-8	15.7	196	
300	Epoxyeicosatrienoic acids and endothelium-dependent responses. <i>Pflugers Archiv European Journal of Physiology</i> , 2010 , 459, 881-95	4.6	195	
299	Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. <i>Journal of Biological Chemistry</i> , 2003 , 278, 44719-26	5.4	194	
298	Endothelial dysfunction coincides with an enhanced nitric oxide synthase expression and superoxide anion production. <i>Hypertension</i> , 1997 , 30, 934-41	8.5	193	
297	Valproic acid inhibits angiogenesis in vitro and in vivo. <i>Molecular Pharmacology</i> , 2004 , 65, 520-7	4.3	186	
296	MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. <i>Blood</i> , 2012 , 119, 1607-16	2.2	185	
295	The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. <i>Cardiovascular Research</i> , 2013 , 99, 315-27	9.9	183	
294	Endothelial dysfunction in atherosclerosis. <i>Journal of Vascular Research</i> , 1996 , 33, 181-94	1.9	183	
293	Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. <i>Circulation Research</i> , 2002 , 91, 837-44	15.7	179	
292	Incubation with endotoxin activates the L-arginine pathway in vascular tissue. <i>Biochemical and Biophysical Research Communications</i> , 1990 , 171, 562-8	3.4	170	
291	Inhibition of diet-induced atherosclerosis and endothelial dysfunction in apolipoprotein E/angiotensin II type 1A receptor double-knockout mice. <i>Circulation</i> , 2004 , 110, 3062-7	16.7	165	
290	NO: the primary EDRF. Journal of Molecular and Cellular Cardiology, 1999, 31, 5-14	5.8	164	
289	Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. <i>Hypertension</i> , 2005 , 45, 759-65	8.5	155	
288	Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2007 , 27, 2612-8	9.4	143	
287	Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. <i>Cardiovascular Research</i> , 1998 , 37, 772-9	9.9	143	

286	Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). <i>FASEB Journal</i> , 2003 , 17, 770-2	0.9	142
285	Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. <i>Cardiovascular Research</i> , 2008 , 80, 445-52	9.9	141
284	Signaling by the angiotensin-converting enzyme. Circulation Research, 2006, 98, 887-96	15.7	138
283	Intracellular alkalinization induced by bradykinin sustains activation of the constitutive nitric oxide synthase in endothelial cells. <i>Circulation Research</i> , 1994 , 74, 1220-6	15.7	138
282	Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. <i>Journal of Cell Science</i> , 2005 , 118, 5489-98	5.3	137
281	Regulation and functional consequences of endothelial nitric oxide formation. <i>Annals of Medicine</i> , 1995 , 27, 331-40	1.5	137
2 80	11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. <i>Journal of Biological Chemistry</i> , 2003 , 278, 29619-25	5.4	136
279	The effect of inhibitors of the L-arginine/nitric oxide pathway on endotoxin-induced loss of vascular responsiveness in anaesthetized rats. <i>British Journal of Pharmacology</i> , 1991 , 103, 1218-24	8.6	130
278	S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1\(\textit{IJournal of Experimental Medicine}\), 2017, 214, 2695-2713	16.6	127
277	Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. <i>Trends in Pharmacological Sciences</i> , 2003 , 24, 24-9	13.2	123
276	Calcium-dependent and calcium-independent activation of the endothelial NO synthase. <i>Journal of Vascular Research</i> , 1997 , 34, 165-74	1.9	122
275	20-HETE-induced contraction of small coronary arteries depends on the activation of Rho-kinase. <i>Hypertension</i> , 2003 , 41, 801-6	8.5	122
274	Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. <i>Circulation</i> , 2004 , 109, 178-83	16.7	119
273	P2YIand Gq/Gitontrol blood pressure by mediating endothelial mechanotransduction. <i>Journal of Clinical Investigation</i> , 2015 , 125, 3077-86	15.9	118
272	Cytochrome P450 epoxygenases as EDHF synthase(s). <i>Pharmacological Research</i> , 2004 , 49, 525-33	10.2	118
271	Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. <i>FASEB Journal</i> , 2002 , 16, 706-8	0.9	118
270	Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. <i>Circulation Research</i> , 1995 , 76, 522-9	15.7	117
269	Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. <i>Journal of Experimental Medicine</i> , 2009 , 206, 2889-96	16.6	111

(2013-2004)

268	Analysis of dichlorodihydrofluorescein and dihydrocalcein as probes for the detection of intracellular reactive oxygen species. <i>Free Radical Research</i> , 2004 , 38, 1257-67	4	111
267	Nifedipine increases cytochrome P4502C expression and endothelium-derived hyperpolarizing factor-mediated responses in coronary arteries. <i>Hypertension</i> , 2000 , 36, 270-5	8.5	111
266	The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 1552-7	11.5	109
265	Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. <i>Circulation Research</i> , 2004 , 94, 60-7	15.7	108
264	Evidence that an L-arginine/nitric oxide dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. <i>British Journal of Pharmacology</i> , 1991 , 103, 1047-52	8.6	108
263	Epoxyeicosatrienoic acids, cell signaling and angiogenesis. <i>Prostaglandins and Other Lipid Mediators</i> , 2007 , 82, 60-7	3.7	107
262	Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. Journal of Clinical Investigation, 2012 , 122, 4218-30	15.9	107
261	Endothelium-derived epoxyeicosatrienoic acids and vascular function. <i>Hypertension</i> , 2006 , 47, 629-33	8.5	106
260	Nucleotide excision DNA repair is associated with age-related vascular dysfunction. <i>Circulation</i> , 2012 , 126, 468-78	16.7	104
259	Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: a modulator of arterial compliance. <i>Circulation Research</i> , 1998 , 82, 696-703	15.7	103
258	Isometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1999 , 96, 112	3 ¹ 4·5	103
257	AT1-receptor blockade by telmisartan upregulates GTP-cyclohydrolase I and protects eNOS in diabetic rats. <i>Free Radical Biology and Medicine</i> , 2008 , 45, 619-26	7.8	102
256	The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. <i>Pharmacological Reviews</i> , 2014 , 66, 1106-40	22.5	100
255	Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. <i>Hypertension</i> , 2006 , 47, 762-70	8.5	100
254	From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: Epoxyeicosatrienoic acids (EETs) and cell signaling 2006 , 111, 584-95		99
253	Angiotensin-converting enzyme inhibitor ramiprilat interferes with the sequestration of the B2 kinin receptor within the plasma membrane of native endothelial cells. <i>Circulation</i> , 1999 , 99, 2034-40	16.7	99
252	Vascular gene transfer of phosphomimetic endothelial nitric oxide synthase (S1177D) using ultrasound-enhanced destruction of plasmid-loaded microbubbles improves vasoreactivity. <i>Circulation</i> , 2002 , 105, 1104-9	16.7	98
251	MicroRNA-223 antagonizes angiogenesis by targeting 1 integrin and preventing growth factor signaling in endothelial cells. <i>Circulation Research</i> , 2013 , 113, 1320-30	15.7	97

250	Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans. <i>Journal of Physiology</i> , 2003 , 546, 307-14	3.9	97	
249	Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. <i>FASEB Journal</i> , 2008 , 22, 4306-15	0.9	96	
248	Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. <i>Journal of Biological Chemistry</i> , 2002 , 277, 15671-6	5.4	96	
247	Dynamic modulation of interendothelial gap junctional communication by 11,12-epoxyeicosatrienoic acid. <i>Circulation Research</i> , 2002 , 90, 800-6	15.7	94	
246	The eNOS signalosome and its link to endothelial dysfunction. <i>Pflugers Archiv European Journal of Physiology</i> , 2016 , 468, 1125-1137	4.6	94	
245	Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHF-mediated Ca(2+) changes and dilation in isolated resistance arteries. <i>FASEB Journal</i> , 2000 , 14, 255-60	0.9	92	
244	Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha. <i>Cardiovascular Research</i> , 2005 , 65, 897-906	9.9	90	
243	Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology - Cell Physiology, 2008 , 295, C1292-301	5.4	87	
242	Vascular cytochrome p450 enzymes: physiology and pathophysiology. <i>Trends in Cardiovascular Medicine</i> , 2008 , 18, 20-5	6.9	85	
241	The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. <i>Pflugers Archiv European Journal of Physiology</i> , 2001 , 442, 511-8	4.6	85	
240	Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. <i>European Journal of Pharmacology</i> , 1991 , 200, 375-6	5.3	84	
239	Platelet sarcoplasmic endoplasmic reticulum Ca2+-ATPase and mu-calpain activity are altered in type 2 diabetes mellitus and restored by rosiglitazone. <i>Circulation</i> , 2008 , 117, 52-60	16.7	83	
238	Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. <i>Nature</i> , 2017 , 552, 248-252	50.4	82	
237	The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. <i>Journal of Cell Science</i> , 2007 , 120, 929-42	5.3	79	
236	AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. <i>Circulation Research</i> , 2013 , 112, 1150-8	15.7	78	
235	Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2016 , 54, 370-83	5.7	77	
234	Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. <i>Circulation Research</i> , 2005 , 97, 1236-44	15.7	76	
233	Anaphylactic shock depends on endothelial Gq/G11. <i>Journal of Experimental Medicine</i> , 2009 , 206, 411-20	016.6	75	

(2004-2005)

232	Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. <i>Hypertension</i> , 2005 , 45, 126-32	8.5	75
231	Dicer cleavage by calpain determines platelet microRNA levels and function in diabetes. <i>Circulation Research</i> , 2015 , 117, 157-65	15.7	74
230	AMP-activated protein kinase (AMPK) regulates the insulin-induced activation of the nitric oxide synthase in human platelets. <i>Thrombosis and Haemostasis</i> , 2003 , 90, 863-71	7	74
229	Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. <i>Hypertension</i> , 2001 , 38, 1427-32	8.5	74
228	Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. <i>Cell Death and Differentiation</i> , 2006 , 13, 446-53	12.7	73
227	CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. <i>Circulation Research</i> , 2002 , 91, 749-56	15.7	72
226	Aged spontaneously hypertensive rats exhibit a selective loss of EDHF-mediated relaxation in the renal artery. <i>Hypertension</i> , 2003 , 42, 562-8	8.5	71
225	Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. <i>Circulation Research</i> , 2008 , 102, 1520-8	15.7	69
224	Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. <i>Signal Transduction and Targeted Therapy</i> , 2021 , 6, 94	21	68
223	Bobbing along on the crest of a wave: NO ascends hamster cheek pouch arterioles. <i>Circulation Research</i> , 2003 , 93, 9-11	15.7	67
222	Cytochrome P4502C9-derived epoxyeicosatrienoic acids induce the expression of cyclooxygenase-2 in endothelial cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2005 , 25, 321-6	9.4	66
221	Hypoxia-induced pulmonary hypertension: comparison of soluble epoxide hydrolase deletion vs. inhibition. <i>Cardiovascular Research</i> , 2010 , 85, 232-40	9.9	64
220	Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP-1. <i>Nitric Oxide - Biology and Chemistry</i> , 2003 , 8, 253-61	5	64
219	Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. <i>Hypertension</i> , 2013 , 62, 140-6	8.5	63
218	Amlodipine activates the endothelial nitric oxide synthase by altering phosphorylation on Ser1177 and Thr495. <i>Cardiovascular Research</i> , 2003 , 59, 844-53	9.9	63
217	Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. <i>Science Signaling</i> , 2016 , 9, ra64	8.8	60
216	Fluid shear stress and NO decrease the activity of the hydroxy-methylglutaryl coenzyme A reductase in endothelial cells via the AMP-activated protein kinase and FoxO1. <i>Circulation Research</i> , 2007 , 100, e12-21	15.7	60
215	Insulin induces the release of vasodilator compounds from platelets by a nitric oxide-G kinase-VAMP-3-dependent pathway. <i>Journal of Experimental Medicine</i> , 2004 , 199, 347-56	16.6	60

214	Nitric oxide-induced activation of the AMP-activated protein kinase ₹ subunit attenuates IB kinase activity and inflammatory responses in endothelial cells. <i>PLoS ONE</i> , 2011 , 6, e20848	3.7	60
213	Cystathionine Lyase Sulfhydrates the RNA Binding Protein Human Antigen R to Preserve Endothelial Cell Function and Delay Atherogenesis. <i>Circulation</i> , 2019 , 139, 101-114	16.7	59
212	Mller glia cells regulate Notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. <i>Journal of Experimental Medicine</i> , 2014 , 211, 281-95	16.6	59
211	Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?. <i>British Journal of Pharmacology</i> , 2004 , 142, 125-35	8.6	59
210	Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. <i>Journal of Clinical Investigation</i> , 2019 , 129, 2775-2791	15.9	59
209	Interdependence of calcium signaling and protein tyrosine phosphorylation in human endothelial cells. <i>Journal of Biological Chemistry</i> , 1996 , 271, 11009-15	5.4	57
208	Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9995-10000	11.5	56
207	DiscrEET regulators of homeostasis: epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. <i>Trends in Pharmacological Sciences</i> , 2007 , 28, 448-52	13.2	55
206	Hypoxia Potentiates Palmitate-induced Pro-inflammatory Activation of Primary Human Macrophages. <i>Journal of Biological Chemistry</i> , 2016 , 291, 413-24	5.4	54
205	Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. <i>FASEB Journal</i> , 2011 , 25, 2408-17	0.9	54
204	Interactions between thromboxane Allthromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. <i>Cardiovascular Research</i> , 2014 , 102, 9-16	9.9	52
203	Soluble epoxide hydrolase deficiency attenuates neointima formation in the femoral cuff model of hyperlipidemic mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2010 , 30, 909-14	9.4	51
202	Mechanisms of increased vascular superoxide production in an experimental model of idiopathic dilated cardiomyopathy. <i>Arteriosclerosis, Thrombosis, and Vascular Biology,</i> 2005 , 25, 2554-9	9.4	51
201	Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. <i>British Journal of Pharmacology</i> , 1999 , 126, 949-60	8.6	51
200	EGFL7 ligates ₩B integrin to enhance vessel formation. <i>Blood</i> , 2013 , 121, 3041-50	2.2	50
199	Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. <i>Journal of Hypertension</i> , 2009 , 27, 322-31	1.9	50
198	Shear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells. <i>Cardiovascular Research</i> , 2008 , 77, 160-8	9.9	50
197	The tissue renin-angiotensin system and intracellular signalling. <i>Current Opinion in Nephrology and Hypertension</i> , 2006 , 15, 8-13	3.5	47

(2007-2015)

196	Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor I signalling and angiogenesis. <i>Cardiovascular Research</i> , 2015 , 106, 284-94	9.9	45	
195	Calpain inhibition stabilizes the platelet proteome and reactivity in diabetes. <i>Blood</i> , 2012 , 120, 415-23	2.2	44	
194	Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2012 , 32, 1605-12	9.4	44	
193	Coronary Revascularization During Heart Regeneration Is Regulated by Epicardial and Endocardial Cues and Forms a Scaffold for Cardiomyocyte Repopulation. <i>Developmental Cell</i> , 2019 , 51, 503-515.e4	10.2	43	
192	miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: a novel therapeutic approach. <i>Cardiovascular Research</i> , 2016 , 111, 184-93	9.9	42	
191	The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2014 , 350, 14-21	4.7	42	
190	Pleiotropic effects of laminar flow and statins depend on the Krppel-like factor-induced lncRNA MANTIS. <i>European Heart Journal</i> , 2019 , 40, 2523-2533	9.5	41	
189	NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2006 , 26, 1753-9	9.4	41	
188	A selective and sensitive method for quantification of endogenous polysulfide production in biological samples. <i>Redox Biology</i> , 2018 , 18, 295-304	11.3	40	
187	Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype. <i>Basic Research in Cardiology</i> , 2011 , 106, 205-15	11.8	40	
186	Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation. <i>Molecular Pain</i> , 2011 , 7, 78	3.4	40	
185	Angiotensin-converting enzyme (ACE) dimerization is the initial step in the ACE inhibitor-induced ACE signaling cascade in endothelial cells. <i>Molecular Pharmacology</i> , 2006 , 69, 1725-32	4.3	40	
184	Unchanged NADPH Oxidase Activity in Nox1-Nox2-Nox4 Triple Knockout Mice: What Do NADPH-Stimulated Chemiluminescence Assays Really Detect?. <i>Antioxidants and Redox Signaling</i> , 2016 , 24, 392-9	8.4	39	
183	AMPK 2 subunit is involved in platelet signaling, clot retraction, and thrombus stability. <i>Blood</i> , 2010 , 116, 2134-40	2.2	39	
182	Cytochrome P450 epoxygenases and vascular tone: novel role for HMG-CoA reductase inhibitors in the regulation of CYP 2C expression. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2003 , 1619, 332-9	4	39	
181	Paracrine functions of the coronary vascular endothelium. <i>Molecular and Cellular Biochemistry</i> , 1996 , 157, 137-45	4.2	39	
180	Role of cytochrome P450 2C epoxygenases in hypoxia-induced cell migration and angiogenesis in retinal endothelial cells. <i>Investigative Ophthalmology and Visual Science</i> , 2008 , 49, 1242-7		38	
179	Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. European Journal of Heart Failure, 2007, 9.770-5	12.3	38	

178	The synthesis of 20-HETE in small porcine coronary arteries antagonizes EDHF-mediated relaxation. <i>Cardiovascular Research</i> , 2005 , 65, 487-94	9.9	38
177	Chronic selective hypertriglyceridemia impairs endothelium-dependent vasodilatation in rats. <i>Cardiovascular Research</i> , 1999 , 42, 783-93	9.9	38
176	Electrophilic fatty acid species inhibit 5-lipoxygenase and attenuate sepsis-induced pulmonary inflammation. <i>Antioxidants and Redox Signaling</i> , 2014 , 20, 2667-80	8.4	37
175	5-Lipoxygenase is a candidate target for therapeutic management of stem cell-like cells in acute myeloid leukemia. <i>Cancer Research</i> , 2014 , 74, 5244-55	10.1	37
174	Characterization of the endothelium-derived hyperpolarizing factor (EDHF) response in the human interlobar artery. <i>Kidney International</i> , 2003 , 63, 1749-55	9.9	37
173	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research". <i>Basic Research in Cardiology</i> , 2016 , 111, 69	11.8	36
172	The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. <i>Vascular Pharmacology</i> , 2016 , 86, 31-40	5.9	36
171	Cytochrome P450-derived epoxyeicosatrienoic acids and pulmonary hypertension: central role of transient receptor potential C6 channels. <i>Journal of Cardiovascular Pharmacology</i> , 2011 , 57, 140-7	3.1	36
170	Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulphaphenazole. <i>Clinical Science</i> , 2003 , 105, 513-8	6.5	36
169	New fACEs to the renin-angiotensin system. <i>Physiology</i> , 2005 , 20, 91-5	9.8	36
168	Prevention of endothelial dysfunction in heart failure by vitamin E: attenuation of vascular superoxide anion formation and increase in soluble guanylyl cyclase expression. <i>Cardiovascular Research</i> , 2001 , 51, 344-50	9.9	36
167	Single cell sequencing reveals endothelial plasticity with transient mesenchymal activation after myocardial infarction. <i>Nature Communications</i> , 2021 , 12, 681	17.4	36
166	Endothelium-derived kinins account for the immediate response of endothelial cells to bacterial lipopolysaccharide. <i>Journal of Cardiovascular Pharmacology</i> , 1992 , 20 Suppl 12, S135-8	3.1	35
165	cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. <i>Circulation</i> , 2011 , 123, 1194-204	16.7	34
164	Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques. <i>Basic Research in Cardiology</i> , 2013 , 108, 319	11.8	33
163	Transforming growth factor-Eactivated kinase 1 regulates angiogenesis via AMP-activated protein kinase-II and redox balance in endothelial cells. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2013 , 33, 2792-9	9.4	33
162	The S1P(2) receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes. <i>Basic Research in Cardiology</i> , 2009 , 104, 333-40	11.8	33
161	Tyrosine phosphorylation and bradykinin-induced signaling in endothelial cells. <i>American Journal of Cardiology</i> , 1997 , 80, 102A-109A	3	32

(1990-2003)

16	Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery. Cardiovascular Research, 2003 , 59, 181-8	9.9	32	
15	Cytochrome P450 enzymes but not NADPH oxidases are the source of the NADPH-dependent lucigenin chemiluminescence in membrane assays. <i>Free Radical Biology and Medicine</i> , 2017 , 102, 57-66	7.8	31	
15	8 HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Experimental Cell Research, 2015 , 331, 46-57	4.2	31	
15	The cytochrome P450 pathway in angiogenesis and endothelial cell biology. <i>Cancer and Metastasis Reviews</i> , 2011 , 30, 541-55	9.6	31	
15	Pro-inflammatory obesity in aged cannabinoid-2 receptor-deficient mice. <i>International Journal of Obesity</i> , 2016 , 40, 366-79	5.5	30	
15	Deleted in malignant brain tumors 1 is present in the vascular extracellular matrix and promotes angiogenesis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2012 , 32, 442-8	9.4	30	
15	4 Endothelium-Derived Bradykinin. <i>Journal of Cardiovascular Pharmacology</i> , 1993 , 22, S31-S36	3.1	30	
15	The endothelial organ. <i>Current Opinion in Cardiology</i> , 1993 , 8, 719-727	2.1	30	
15	Mena/VASP and II-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy. <i>Cell Communication and Signaling</i> , 2013 , 11, 56	7.5	29	
15	Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4. <i>Arteriosclerosis, Thrombosis,</i> and Vascular Biology, 2008 , 28, 1123-9	9.4	29	
15	Impaired interaction of platelets with endothelial progenitor cells in patients with cardiovascular risk factors. <i>Basic Research in Cardiology</i> , 2008 , 103, 572-81	11.8	29	
14	The extracellular regulated kinases (ERK) 1/2 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells. <i>British Journal of Pharmacology</i> , 2002 , 136, 709-16	8.6	29	
14	8 EDHF: a cytochrome P450 metabolite in coronary arteries. <i>Seminars in Perinatology</i> , 2000 , 24, 15-9	3.3	29	
14	Calcium signalling and autacoid production in endothelial cells are modulated by changes in tyrosine kinase and phosphatase activity. <i>Journal of Vascular Research</i> , 1996 , 33, 225-34	1.9	29	
14	Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. <i>Nature Communications</i> , 2020 , 11, 2303	17.4	28	
14	Angiotensin-converting enzyme (ACE) inhibitors modulate cellular retinol-binding protein 1 and adiponectin expression in adipocytes via the ACE-dependent signaling cascade. <i>Molecular Pharmacology</i> , 2009 , 75, 685-92	4.3	28	
14	Activation of the l-Arginine-Nitric Oxide Pathway Is Involved in Vascular Hyporeactivity Induced by Endotoxin. <i>Journal of Cardiovascular Pharmacology</i> , 1991 , 17, S207-S212	3.1	28	
14	An L-arginine-derived factor mediates endotoxin-induced vascular hyposensitivity to calcium. European Journal of Pharmacology, 1990 , 191, 89-92	5.3	28	

142	The NADPH organizers NoxO1 and p47phox are both mediators of diabetes-induced vascular dysfunction in mice. <i>Redox Biology</i> , 2018 , 15, 12-21	11.3	28
141	Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice. <i>Basic Research in Cardiology</i> , 2017 , 112, 10	11.8	27
140	ECatenin Is Required for Endothelial Cyp1b1 Regulation Influencing Metabolic Barrier Function. Journal of Neuroscience, 2016 , 36, 8921-35	6.6	27
139	AMP-Activated Protein Kinase 2 in Neutrophils Regulates Vascular Repair via Hypoxia-Inducible Factor-1 and a Network of Proteins Affecting Metabolism and Apoptosis. <i>Circulation Research</i> , 2017, 120, 99-109	15.7	27
138	The F-BAR protein NOSTRIN participates in FGF signal transduction and vascular development. <i>EMBO Journal</i> , 2012 , 31, 3309-22	13	27
137	Cytochrome P450 2C expression and EDHF-mediated relaxation in porcine coronary arteries is increased by cortisol. <i>Cardiovascular Research</i> , 2002 , 54, 669-75	9.9	27
136	Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. <i>Nature Communications</i> , 2018 , 9, 2292	17.4	26
135	11,12-EET stimulates the association of BK channel hand (11) subunits in mitochondria to induce pulmonary vasoconstriction. <i>PLoS ONE</i> , 2012 , 7, e46065	3.7	25
134	Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition. <i>EMBO Journal</i> , 2019 , 38, e100938	13	24
133	Epigenetic Regulation of Angiogenesis by JARID1B-Induced Repression of HOXA5. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2015 , 35, 1645-52	9.4	24
132	Ca2+-sensing receptor cleavage by calpain partially accounts for altered vascular reactivity in mice fed a high-fat diet. <i>Journal of Cardiovascular Pharmacology</i> , 2013 , 61, 528-35	3.1	24
131	Cytochrome P450-dependent eicosanoid production and crosstalk. <i>Current Opinion in Lipidology</i> , 2011 , 22, 403-9	4.4	24
130	Cytochrome P450-derived epoxyeicosatrienoic acids accelerate wound epithelialization and neovascularization in the hairless mouse ear wound model. <i>Langenbeckls Archives of Surgery</i> , 2011 , 396, 1245-53	3.4	24
129	Inhibition of the soluble epoxide hydrolase by tyrosine nitration. <i>Journal of Biological Chemistry</i> , 2009 , 284, 28156-28163	5.4	24
128	CYP4A11 polymorphism correlates with coronary endothelial dysfunction in patients with coronary artery diseasethe ENCORE Trials. <i>Atherosclerosis</i> , 2009 , 207, 476-9	3.1	24
127	The effects of COX-2 selective and non-selective NSAIDs on the initiation and progression of atherosclerosis in ApoE-/- mice. <i>Journal of Molecular Medicine</i> , 2007 , 85, 623-33	5.5	23
126	Control and consequences of endothelial nitric oxide formation. <i>Advances in Pharmacology</i> , 1995 , 34, 187-206	5.7	23
125	Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. <i>Biochemical Pharmacology</i> , 2020 , 176, 113833	6	23

(2021-2016)

124	Differential effects of EPA versus DHA on postprandial vascular function and the plasma oxylipin profile in men. <i>Journal of Lipid Research</i> , 2016 , 57, 1720-7	6.3	23
123	Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients: Rescue by Eketoglutarate and TET-TDG Functional Reactivation. <i>Circulation Research</i> , 2018 , 122, 31-46	15.7	23
122	Signaling via the angiotensin-converting enzyme results in the phosphorylation of the nonmuscle myosin heavy chain IIA. <i>Molecular Pharmacology</i> , 2006 , 69, 19-26	4.3	22
121	The Na-K-ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar artery. <i>British Journal of Pharmacology</i> , 2002 , 137, 647-54	8.6	22
120	Cytochrome P450 2C is an EDHF synthase in coronary arteries. <i>Trends in Cardiovascular Medicine</i> , 2000 , 10, 166-70	6.9	22
119	Nitroglycerine limits infarct size through S-nitrosation of cyclophilin D: a novel mechanism for an old drug. <i>Cardiovascular Research</i> , 2019 , 115, 625-636	9.9	22
118	Soluble epoxide hydrolase disruption as therapeutic target for wound healing. <i>Journal of Surgical Research</i> , 2013 , 182, 362-7	2.5	21
117	Adenoviral-mediated overexpression of DDAH improves vascular tone regulation. <i>Vascular Medicine</i> , 2010 , 15, 205-13	3.3	21
116	Increased cerebrospinal fluid calpain activity and microparticle levels in Alzheimerß disease. <i>Alzheimerk and Dementia</i> , 2015 , 11, 465-74	1.2	20
115	Cytochrome P-450 under pressure: more evidence for a link between 20-hydroxyeicosatetraenoic acid and hypertension. <i>Circulation</i> , 2005 , 111, 5-7	16.7	20
114	Effect of endotoxin on circulating cyclic GMP in the rat. <i>European Journal of Pharmacology</i> , 1992 , 212, 93-6	5.3	20
113	Methylglyoxal induces platelet hyperaggregation and reduces thrombus stability by activating PKC and inhibiting PI3K/Akt pathway. <i>PLoS ONE</i> , 2013 , 8, e74401	3.7	20
112	Mapping the Endothelial Cell-Sulfhydrome Highlights the Crucial Role of Integrin Sulfhydration in Vascular Function. <i>Circulation</i> , 2021 , 143, 935-948	16.7	20
111	Increased cytochrome P4502E1 expression and altered hydroxyeicosatetraenoic acid formation mediate diabetic vascular dysfunction: rescue by guanylyl-cyclase activation. <i>Diabetes</i> , 2010 , 59, 2001-9	0.9	19
110	Nitric oxide inhibits glomerular TGF-beta signaling via SMOC-1. <i>Journal of the American Society of Nephrology: JASN</i> , 2009 , 20, 1963-74	12.7	19
109	aPKC controls endothelial growth by modulating c-Myc via FoxO1 DNA-binding ability. <i>Nature Communications</i> , 2018 , 9, 5357	17.4	19
108	Shear stress regulates cystathionine Ilyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation. <i>Redox Biology</i> , 2020 , 28, 101379	11.3	18
107	VE-PTP inhibition elicits eNOS phosphorylation to blunt endothelial dysfunction and hypertension in diabetes. <i>Cardiovascular Research</i> , 2021 , 117, 1546-1556	9.9	18

106	Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B. <i>Thrombosis and Haemostasis</i> , 2017 , 117, 556-569	7	17
105	Nitric oxide and endothelium-derived hyperpolarizing factor: formation and interactions. <i>Prostaglandins Leukotrienes and Essential Fatty Acids</i> , 1997 , 57, 439-46	2.8	17
104	Nitric oxide- and EDHF-mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9. <i>Kidney International</i> , 2005 , 67, 1907-12	9.9	17
103	Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2. <i>Cardiovascular Research</i> , 2017 , 113, 926-937	9.9	17
102	Polarization of Human Macrophages by Interleukin-4 Does Not Require ATP-Citrate Lyase. <i>Frontiers in Immunology</i> , 2018 , 9, 2858	8.4	17
101	VASP regulates leukocyte infiltration, polarization, and vascular repair after ischemia. <i>Journal of Cell Biology</i> , 2018 , 217, 1503-1519	7.3	16
100	Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity. <i>Thrombosis and Haemostasis</i> , 2015 , 114, 569-78	7	16
99	Whatever happened to the epoxyeicosatrienoic Acid-like endothelium-derived hyperpolarizing factor? The identification of novel classes of lipid mediators and their role in vascular homeostasis. <i>Antioxidants and Redox Signaling</i> , 2015 , 22, 1273-92	8.4	16
98	Stereological characterization of left ventricular cardiomyocytes, capillaries, and innervation in the nondiabetic, obese mouse. <i>Cardiovascular Pathology</i> , 2012 , 21, 346-54	3.8	16
97	Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity. <i>American Journal of Physiology - Renal Physiology</i> , 2007 , 293, F288-9	9 8 ·3	16
96	Regulation of NO synthesis in endothelial cells. <i>Kidney and Blood Pressure Research</i> , 1998 , 21, 264-6	3.1	16
95	Nitric oxide, nitric oxide synthase, and hypertensive vascular disease. <i>Current Hypertension Reports</i> , 1999 , 1, 88-95	4.7	16
94	Angiopoietin-2 mediates thrombin-induced monocyte adhesion and endothelial permeability. Journal of Thrombosis and Haemostasis, 2016 , 14, 1655-67	15.4	16
93	Hydrogen Sulfide Preserves Endothelial Nitric Oxide Synthase Function by Inhibiting Proline-Rich Kinase 2: Implications for Cardiomyocyte Survival and Cardioprotection. <i>Molecular Pharmacology</i> , 2017 , 92, 718-730	4.3	15
92	Platelet function and signaling in diabetes mellitus. Current Vascular Pharmacology, 2012, 10, 532-8	3.3	15
91	Soluble epoxide hydrolase promotes astrocyte survival in retinopathy of prematurity. <i>Journal of Clinical Investigation</i> , 2019 , 129, 5204-5218	15.9	14
90	Endothelial AMP-Activated Kinase ¶ Phosphorylates eNOS on Thr495 and Decreases Endothelial NO Formation. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	14
89	Phosphorylation of vasodilator-stimulated phosphoprotein contributes to myocardial ischemic preconditioning. <i>Basic Research in Cardiology</i> , 2018 , 113, 11	11.8	13

(2021-2018)

88	Role of the angiotensin-converting enzyme in the G-CSF-induced mobilization of progenitor cells. <i>Basic Research in Cardiology</i> , 2018 , 113, 18	11.8	13
87	All cut up! The consequences of calpain activation on platelet function. <i>Vascular Pharmacology</i> , 2012 , 56, 210-5	5.9	13
86	Myoendothelial gap junctions: the gap is there, but does EDHF go through it?. <i>Circulation Research</i> , 2000 , 86, 249-50	15.7	13
85	Angiogenesis and vascular stability in eicosanoids and cancer. <i>Cancer and Metastasis Reviews</i> , 2018 , 37, 425-438	9.6	13
84	HIF-2 Lattenuates lymphangiogenesis by up-regulating IGFBP1 in hepatocellular carcinoma. <i>Biology of the Cell</i> , 2015 , 107, 175-88	3.5	12
83	Redox Control of Renal Metabolism and Transport Function by the NADPH Oxidase Nox4. <i>Free Radical Biology and Medicine</i> , 2017 , 112, 174	7.8	12
82	Molecular pharmacological profile of a novel thiazolinone-based direct and selective 5-lipoxygenase inhibitor. <i>British Journal of Pharmacology</i> , 2012 , 165, 2304-13	8.6	12
81	Complementary screening techniques yielded fragments that inhibit the phosphatase activity of soluble epoxide hydrolase. <i>ChemMedChem</i> , 2011 , 6, 2146-9	3.7	12
80	The role of calpain in diabetes-associated platelet hyperactivation. <i>Advances in Pharmacology</i> , 2010 , 59, 235-57	5.7	12
79	Endothelium-derived hyperpolarizing factor, but not nitric oxide, is reversibly inhibited by brefeldin A. <i>Hypertension</i> , 1997 , 30, 1598-605	8.5	12
78	Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. <i>Prostaglandins and Other Lipid Mediators</i> , 2020 , 148, 106407	3.7	12
77	The soluble epoxide hydrolase determines cholesterol homeostasis by regulating AMPK and SREBP activity. <i>Prostaglandins and Other Lipid Mediators</i> , 2016 , 125, 30-9	3.7	12
76	Platelet-Enriched MicroRNAs and Cardiovascular Homeostasis. <i>Antioxidants and Redox Signaling</i> , 2018 , 29, 902-921	8.4	12
75	Extracellular RNA released due to shear stress controls natural bypass growth by mediating mechanotransduction in mice. <i>Blood</i> , 2019 , 134, 1469-1479	2.2	11
74	The F-BAR Protein NOSTRIN Dictates the Localization of the Muscarinic M3 Receptor and Regulates Cardiovascular Function. <i>Circulation Research</i> , 2015 , 117, 460-9	15.7	11
73	The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie-restricted mouse heart. <i>Journal of Anatomy</i> , 2014 , 225, 539-47	2.9	11
72	Thrombin receptor expression is increased by angiotensin II in cultured and native vascular smooth muscle cells. <i>Cardiovascular Research</i> , 1998 , 38, 263-71	9.9	11
71	Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants. <i>Basic Research in Cardiology</i> , 2021 , 116, 42	11.8	11

70	AKAP12 deficiency impairs VEGF-induced endothelial cell migration and sprouting. <i>Acta Physiologica</i> , 2020 , 228, e13325	5.6	11
69	Role of MIler cell cytochrome P450 2c44 in murine retinal angiogenesis. <i>Prostaglandins and Other Lipid Mediators</i> , 2017 , 133, 93-102	3.7	10
68	Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. <i>Nature Communications</i> , 2018 , 9, 1281	17.4	10
67	Mitochondrial fragmentation in human macrophages attenuates palmitate-induced inflammatory responses. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2018 , 1863, 433-446	5	10
66	Vascular cytochrome P450 in the regulation of renal function and vascular tone: EDHF, superoxide anions and blood pressure. <i>Nephrology Dialysis Transplantation</i> , 2001 , 16, 1309-11	4.3	10
65	Epigenetic control of the angiotensin-converting enzyme in endothelial cells during inflammation. <i>PLoS ONE</i> , 2019 , 14, e0216218	3.7	9
64	Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy. <i>Scientific Reports</i> , 2018 , 8, 10945	4.9	9
63	A Modified Aortic Ring Assay to Assess Angiogenic Potential In Vitro. <i>Methods in Molecular Biology</i> , 2016 , 1430, 205-19	1.4	9
62	Anomalous K 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H S and persulfidation in skeletal muscle. <i>British Journal of Pharmacology</i> , 2020 , 177, 810-823	8.6	9
61	Endothelial nitric oxide synthase (eNOS) in platelets: how is it regulated and what is it doing there?. <i>Pharmacological Reports</i> , 2005 , 57 Suppl, 59-65	3.9	9
60	Regulation of calpain 2 expression by miR-223 and miR-145. <i>Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms</i> , 2019 , 1862, 194438	6	8
59	Pathophysiology of Chronic Venous Insufficiency. <i>Phlebology</i> , 1996 , 11, 16-22	2	8
58	EVL regulates VEGF receptor-2 internalization and signaling in developmental angiogenesis. <i>EMBO Reports</i> , 2021 , 22, e48961	6.5	8
57	The role of eNOS on the compensatory regulation of vascular tonus by HS in mouse carotid arteries. <i>Nitric Oxide - Biology and Chemistry</i> , 2017 , 69, 45-50	5	7
56	Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. <i>Oncotarget</i> , 2017 , 8, 67567-67591	3.3	7
55	Myeloid-Specific Deletion of the AMPK Subunit Alters Monocyte Protein Expression and Atherogenesis. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	7
54	New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Frontiers in Pharmacology, 2019, 10, 739	5.6	7
53	Cirrhosis serum induces a nitric oxide-associated vascular hyporeactivity of aortic segments from healthy rats in vitro. <i>European Journal of Gastroenterology and Hepatology</i> , 2001 , 13, 957-62	2.2	7

(2021-2019)

Association between arginase-containing platelet-derived microparticles and altered plasma arginine metabolism in polycystic ovary syndrome. <i>Metabolism: Clinical and Experimental</i> , 2019 , 90, 16-1	9 ^{12.7}	7	
Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. <i>Clinical Science</i> , 2018 , 132, 1875-1888	6.5	7	
Activation of adenosine-monophosphate-activated protein kinase abolishes desflurane-induced preconditioning against myocardial infarction in vivo. <i>Journal of Cardiothoracic and Vascular Anesthesia</i> , 2011 , 25, 66-71	2.1	6	
Biology of Nitric Oxide Synthases 2008 , 56-80		6	
Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion. <i>Oncotarget</i> , 2016 , 7, 20410-24	3.3	6	
Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 5923-5930	11.5	5	
Realizing its potential: the intermediate conductance Ca2+-activated K+ channel (KCa3.1) and the regulation of blood pressure. <i>Circulation Research</i> , 2006 , 99, 462-4	15.7	5	
G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. <i>Nature Communications</i> , 2021 , 12, 6798	17.4	5	
Kinin-mediated activation of endothelial no formation: possible role during myocardial ischemia. <i>Agents and Actions Supplements</i> , 1995 , 45, 119-27	0.2	5	
Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. <i>Basic Research in Cardiology</i> , 2020 , 115, 75	11.8	5	
ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. <i>Journal of Immunology</i> , 2019 , 202, 1099-1111	5.3	5	
Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. <i>Blood</i> , 2021 , 137, 1641-1651	2.2	5	
IL27R Deficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. <i>Frontiers in Oncology</i> , 2019 , 9, 1022	5.3	4	
The Physiology of Nitric Oxide: Control and Consequences. <i>Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents</i> , 2004 , 3, 189-205		4	
Endothelium-Derived Hyperpolarizing Factor and Its Interaction with NO 2000, 569-583		4	
Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. <i>Theranostics</i> , 2020 , 10, 7857-7871	12.1	4	
Redox Regulation of Calpains: Consequences on Vascular Function. <i>Antioxidants and Redox Signaling</i> , 2019 , 30, 1011-1026	8.4	4	
Combined Cardioprotective and Adipocyte Browning Effects Promoted by the Eutomer of Dual sEH/PPAR[Modulator. <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 2815-2828	8.3	4	
	arginine metabolism in polycystic ovary syndrome. <i>Metabolism: Clinical and Experimental</i> , 2019, 90, 16-1 Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. <i>Clinical Science</i> , 2018, 132, 1875-1888 Activation of adenosine-monophosphate-activated protein kinase abolishes desflurane-induced preconditioning against myocardial infarction in vivo. <i>Journal of Cardiothoracic and Vascular Anesthesia</i> , 2011, 25, 66-71 Biology of Nitric Oxide Synthases 2008, 56-80 Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion. <i>Oncotarget</i> , 2016, 7, 20410-24 Cyp2-44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020, 117, 5923-5930 Realizing its potential: the intermediate conductance Ca2+-activated K+ channel (KCa3.1) and the regulation of blood pressure. <i>Circulation Research</i> , 2006, 99, 462-4 C-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. <i>Nature Communications</i> , 2021, 12, 6798 Kinin-mediated activation of endothelial no formation: possible role during myocardial ischemia. <i>Agents and Actions Supplements</i> , 1995, 45, 119-27 Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. <i>Basic Research in Cardiology</i> , 2020, 115, 75 ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. <i>Journal of Immunology</i> , 2019, 202, 1099-1111 Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. <i>Blood</i> , 2021, 137, 1641-1651 IL27RDeficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. <i>Frontiers in Oncology</i> , 2019, 9, 1022 The Physiology of Nitric Oxide: Control and Consequences. <i>Current Medicinal Chemistry Anti</i>	arginine metabolism in polycystic ovary syndrome. <i>Metabolism: Clinical and Experimental</i> , 2019, 90, 16-19 ¹²⁻⁷ Platelet communication with the vascular walls role of platelet-derived microparticles and non-coding RNAs. <i>Clinical Science</i> , 2018, 132, 1875-1888 Activation of adenosine-monophosphate-activated protein kinase abolishes desflurane-induced preconditioning against myocardial infarction in vivo. <i>Journal of Cardiothoracic and Vascular Anesthesia</i> , 2011, 25, 66-71 Biology of Nitric Oxide Synthases 2008, 56-80 Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion. <i>Oncotarget</i> , 2016, 7, 20410-24 Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020, 117, 5923-5930 Realizing its potential: the intermediate conductance Ca2+-activated K+ channel (KCa3.1) and the regulation of blood pressure. <i>Circulation Research</i> , 2006, 99, 462-4 G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. <i>Nature Communications</i> , 2021, 12, 6798 37-4 Kinin-mediated activation of endothelial no formation: possible role during myocardial ischemia. <i>Agents and Actions Supplements</i> , 1995, 45, 119-27 Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. <i>Basic Research in Cardiology</i> , 2020, 115, 75 ADAR1 is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. <i>Journal of immunology</i> , 2019, 202, 1099-1111 Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. <i>Blood</i> , 2021, 137, 1641-1651 L2.2 REDeficiency Alters Endothelial Cell Function and Subverts Tumor Angiogenesis in Mammary Carcinoma. <i>Frontiers in Oncology</i> , 2019, 9, 1022 The Physiology of Nitric Oxide: Control and Consequences. <i>Current Medicin</i>	arginine metabolism in polycystic ovary syndrome. <i>Metabolism: Clinical and Experimental</i> , 2019, 90, 16-19 ³²⁻⁷ 7 Platelet communication with the vascular walls role of platelet-derived microparticles and non-coding RNAs. <i>Clinical Science</i> , 2018, 132, 1875-1888 Activation of adenosine-monophosphate-activated protein kinase abolishes desfurane-induced preconditioning against myocardial infarction in vivo. <i>Journal of Cardiothoracic and Vascular Anesthesia</i> , 2011, 25, 66-71 Biology of Nitric Oxide Synthases 2008, 56-80 Renal cell carcinoma alters endothelial receptor expression responsible for leukocyte adhesion. <i>Oncotarget</i> , 2016, 7, 20410-24 Cyp2c4d regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. <i>Proteedings of the National Academy of Sciences of the United States of America</i> , 2020, 117, 5923-5930 Realizing its potential: the intermediate conductance Ca2+activated K+ channel (KCa3.1) and the regulation of blood pressure. <i>Circulation Research</i> , 2006, 99, 462-4 G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4T cell migration through autocrine/paracrine mediators. <i>Nature Communications</i> , 2021, 12, 6798 Kinin-mediated activation of endothelial no formation: possible role during myocardial ischemia. <i>Agents and Actions Supplements</i> , 1995, 45, 119-27 Platelet-derived calpain cleaves the endothelial protease-activated receptor 1 to induce vascular inflammation in diabetes. <i>Basic Research in Cardiology</i> , 2020, 115, 75 ADAR1 Is Required for Dendritic Cell Subset Homeostasis and Alveolar Macrophage Function. Journal of Immunology, 2019, 2019, 2019, 1912 The Physiology of Nitric Oxide: Control and Consequences. <i>Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents</i> , 2004, 3, 189-205 Endothelium-Derived Hyperpolarizing Factor and Its Interaction with NO 2000, 569-583 4 Protective effect of Soluble Epoxide Hydrolase Inhibition in Retinal Vasculopathy associated with Polycystic Kidney Disease. <i>Theranostics</i> , 2020,

34	Can erythrocytes release biologically active NO?. Cell Communication and Signaling, 2016, 14, 22	7·5	3
33	The histone demethylase Jarid1b mediates angiotensin II-induced endothelial dysfunction by controlling the 3PJTR of soluble epoxide hydrolase. <i>Acta Physiologica</i> , 2019 , 225, e13168	5.6	3
32	Identification of a cis-element regulating transcriptional activity in response to fluid shear stress in bovine aortic endothelial cells. <i>Endothelium: Journal of Endothelial Cell Research</i> , 2003 , 10, 267-75		3
31	Activation of NOS by Ca2+-Dependent and Ca2+-Independent Mechanisms 2000 , 621-632		3
30	Chronic Hypoxia Enhances Exidation-Dependent Electron Transport via Electron Transferring Flavoproteins. <i>Cells</i> , 2019 , 8,	7.9	3
29	Oxidative Post-Translational Modifications: A Focus on Cysteine Sulfhydration and the Regulation of Endothelial Fitness. <i>Antioxidants and Redox Signaling</i> , 2021 , 35, 1494-1514	8.4	3
28	Cyclin Y is expressed in Platelets and Modulates Integrin Outside-in Signaling. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	2
27	A critical look at cardiovascular translational research. <i>American Journal of Physiology - Heart and Circulatory Physiology</i> , 1999 , 277, H1655-60	5.2	2
26	Cytochrome P450-derived fatty acid epoxides and diols in angiogenesis and stem cell biology. <i>Pharmacology & Therapeutics</i> , 2021 , 108049	13.9	2
25	Identification of a cis -Element Regulating Transcriptional Activity in Response to Fluid Shear Stress in Bovine Aortic Endothelial Cells. <i>Endothelium: Journal of Endothelial Cell Research</i> , 2003 , 10, 267-275		2
24	Effects of macitentan and tadalafil monotherapy or their combination on the right ventricle and plasma metabolites in pulmonary hypertensive rats. <i>Pulmonary Circulation</i> , 2020 , 10, 204589402094728	3 3 .7	2
23	Response to Pagano et al. <i>Antioxidants and Redox Signaling</i> , 2015 , 23, 1247-9	8.4	1
22	NO Signaling Defects in Hypertension 2017 , 301-311		1
21	Energy and motion: AMP-activated protein kinase # and its role in platelet activation. <i>Journal of Thrombosis and Haemostasis</i> , 2014 , 12, 970-2	15.4	1
20	Biology of Nitric Oxide Synthases 2008 , 56-80		1
19	Rudi Busse (1943 1 007). <i>Circulation Research</i> , 2007 , 101, 431-432	15.7	1
18	Phosphodiesterases S-sulfhydration contributes to human skeletal muscle function <i>Pharmacological Research</i> , 2022 , 177, 106108	10.2	1
17	AGMO Inhibitor Reduces 3T3-L1 Adipogenesis. <i>Cells</i> , 2021 , 10,	7.9	1

LIST OF PUBLICATIONS

16	The Consequences of Soluble Epoxide Hydrolase Deletion on Tumorigenesis and Metastasis in a Mouse Model of Breast Cancer. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	1
15	Human platelets are a source of collagen I. <i>Haematologica</i> , 2021 , 106, 899-902	6.6	1
14	Loss of Endothelial Cytochrome P450 Reductase Induces Vascular Dysfunction in Mice <i>Hypertension</i> , 2022 , HYPERTENSIONAHA12118752	8.5	1
13	Phosphatidylserine Synthase PTDSS1 Shapes the Tumor Lipidome to Maintain Tumor-Promoting Inflammation <i>Cancer Research</i> , 2022 , 82, 1617-1632	10.1	1
12	Effect of Thrombin on the Metabolism and Function of Murine Macrophages. <i>Cells</i> , 2022 , 11, 1718	7.9	1
11	Who is afraid of being a reviewer? An A-Z of tips and tricks for peer review. <i>Cardiovascular Research</i> , 2021 , 117, e104-e105	9.9	O
10	Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. <i>Scientific Reports</i> , 2021 , 11, 18764	4.9	О
9	Cytochrome P450-Derived Lipid Mediators and Vascular Responses 2015 , 209-231		
0	December 6 and the confidence of the confidence		
8	Paracrine functions of the coronary vascular endothelium 1996 , 137-145		
7	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for ACE-dependent signaling in endothelial cells. <i>FASEB Journal</i> , 2006 , 20, A1110	0.9	
	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for	0.9	
7	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for ACE-dependent signaling in endothelial cells. <i>FASEB Journal</i> , 2006 , 20, A1110		
7	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for ACE-dependent signaling in endothelial cells. <i>FASEB Journal</i> , 2006 , 20, A1110 Regulation of the soluble epoxide hydrolase by peroxynitrite. <i>FASEB Journal</i> , 2008 , 22, 479.14		
7 6 5	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for ACE-dependent signaling in endothelial cells. <i>FASEB Journal</i> , 2006 , 20, A1110 Regulation of the soluble epoxide hydrolase by peroxynitrite. <i>FASEB Journal</i> , 2008 , 22, 479.14 Vascular Effects of NO 1997 , 161-175 sEH-deficiency attenuates neointima formation in the femoral artery cuff model of hyperlipidemic	0.9	
7 6 5	Angiotensin converting enzyme (ACE) inhibitors elicit the dimerization of ACE: an essential step for ACE-dependent signaling in endothelial cells. <i>FASEB Journal</i> , 2006 , 20, A1110 Regulation of the soluble epoxide hydrolase by peroxynitrite. <i>FASEB Journal</i> , 2008 , 22, 479.14 Vascular Effects of NO 1997 , 161-175 SEH-deficiency attenuates neointima formation in the femoral artery cuff model of hyperlipidemic mice. <i>FASEB Journal</i> , 2009 , 23, 934.4 Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric	0.9	