
Taotao Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081818/publications.pdf Version: 2024-02-01

Τλοτλο Ει

#	Article	IF	CITATIONS
1	Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting. Chemical Engineering Science, 2012, 84, 207-217.	3.8	224
2	Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chemical Engineering Science, 2010, 65, 3739-3748.	3.8	163
3	Bubble formation and breakup dynamics in microfluidic devices: A review. Chemical Engineering Science, 2015, 135, 343-372.	3.8	128
4	Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chemical Engineering Science, 2009, 64, 2392-2400.	3.8	117
5	Dynamics of bubble breakup in a microfluidic T-junction divergence. Chemical Engineering Science, 2011, 66, 4184-4195.	3.8	106
6	Ferrofluid droplet formation and breakup dynamics in a microfluidic flow-focusing device. Soft Matter, 2013, 9, 9792.	2.7	64
7	Flow patterns of liquid–liquid two-phase flow in non-Newtonian fluids in rectangular microchannels. Chemical Engineering and Processing: Process Intensification, 2015, 91, 114-120.	3.6	64
8	Scaling the formation of slug bubbles in microfluidic flow-focusing devices. Microfluidics and Nanofluidics, 2010, 8, 467-475.	2.2	61
9	Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction. Chemical Engineering Science, 2018, 188, 158-169.	3.8	53
10	Breakup dynamics for highâ€viscosity droplet formation in a flowâ€focusing device: Symmetrical and asymmetrical ruptures. AICHE Journal, 2016, 62, 325-337.	3.6	52
11	Scaling of the bubble formation in a flow-focusing device: Role of the liquid viscosity. Chemical Engineering Science, 2014, 105, 213-219.	3.8	49
12	Active control of ferrofluid droplet breakup dynamics in a microfluidic T-junction. Microfluidics and Nanofluidics, 2015, 18, 19-27.	2.2	48
13	Numerical simulation of the interactions between three equal-interval parallel bubbles rising in non-Newtonian fluids. Chemical Engineering Science, 2013, 93, 55-66.	3.8	47
14	Hydrodynamic feedback on bubble breakup at a Tâ€ j unction within an asymmetric loop. AICHE Journal, 2014, 60, 1920-1929.	3.6	47
15	Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices. Chemical Engineering Science, 2016, 144, 75-86.	3.8	46
16	Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations. Chemical Engineering Journal, 2019, 373, 1203-1211.	12.7	45
17	Breakup dynamics of slender bubbles in nonâ€newtonian fluids in microfluidic flowâ€focusing devices. AICHE Journal, 2012, 58, 3560-3567.	3.6	44
18	Gas-liquid two-phase flow in a square microchannel with chemical mass transfer: Flow pattern, void fraction and frictional pressure drop. International Journal of Heat and Mass Transfer, 2018, 127, 484-496.	4.8	39

#	Article	IF	CITATIONS
19	Experimental investigation on gas-liquid mass transfer with fast chemical reaction in microchannel. International Journal of Heat and Mass Transfer, 2017, 114, 83-89.	4.8	38
20	Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device. Chemical Engineering Science, 2018, 176, 66-76.	3.8	38
21	An effective hybrid solvent of MEA/DEEA for CO2 absorption and its mass transfer performance in microreactor. Separation and Purification Technology, 2020, 242, 116795.	7.9	38
22	Asymmetrical breakup of bubbles at a microfluidic T-junction divergence: feedback effect of bubble collision. Microfluidics and Nanofluidics, 2012, 13, 723-733.	2.2	37
23	Critical lengths for the transition of bubble breakup in microfluidic T-junctions. Chemical Engineering Science, 2014, 111, 244-254.	3.8	37
24	Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction. Chemical Engineering Science, 2015, 132, 128-138.	3.8	37
25	Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel. Chemical Engineering Science, 2019, 201, 264-273.	3.8	35
26	Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel. International Journal of Heat and Mass Transfer, 2019, 128, 1064-1071.	4.8	35
27	Gas–liquid flow stability and bubble formation in non-Newtonian fluids in microfluidic flow-focusing devices. Microfluidics and Nanofluidics, 2011, 10, 1135-1140.	2.2	34
28	Bubble formation in non-Newtonian fluids in a microfluidic T-junction. Chemical Engineering and Processing: Process Intensification, 2011, 50, 438-442.	3.6	34
29	Breakup dynamics for droplet formation in a flow-focusing device: Rupture position of viscoelastic thread from matrix. Chemical Engineering Science, 2016, 153, 255-269.	3.8	33
30	Systematic Study on the Coalescence and Breakup Behaviors of Multiple Parallel Bubbles Rising in Power-law Fluid. Industrial & Engineering Chemistry Research, 2014, 53, 4850-4860.	3.7	32
31	Bubble breakup with permanent obstruction in an asymmetric microfluidic <scp>T</scp> â€junction. AICHE Journal, 2015, 61, 1081-1091.	3.6	31
32	Dynamics and mass transfer characteristics of CO2 absorption into MEA/[Bmim][BF4] aqueous solutions in a microchannel. Separation and Purification Technology, 2019, 210, 541-552.	7.9	31
33	Dynamics of bubble formation in highly viscous liquids in a flow-focusing device. Chemical Engineering Science, 2017, 172, 278-285.	3.8	30
34	Numbering-up strategies of micro-chemical process: Uniformity of distribution of multiphase flow in parallel microchannels. Chemical Engineering and Processing: Process Intensification, 2018, 132, 148-159.	3.6	30
35	Mass transfer characteristics of CO2 absorption into 2-amino-2-methyl-1-propanol non-aqueous solution in a microchannel. Journal of Industrial and Engineering Chemistry, 2019, 75, 194-201.	5.8	30
36	Mass transfer of chemical absorption of CO2 in a serpentine minichannel. Chemical Engineering Journal, 2021, 414, 128791.	12.7	29

#	Article	IF	CITATIONS
37	Micro-magnetofluidics of ferrofluid droplet formation in a T-junction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 572-579.	4.7	27
38	Effects of the Gas Feed on Bubble Formation in a Microfluidic T-Junction: Constant-Pressure versus Constant-Flow-Rate Injection. Industrial & Engineering Chemistry Research, 2019, 58, 10092-10105.	3.7	27
39	Bubble coalescence at a microfluidic T-junction convergence: from colliding to squeezing. Microfluidics and Nanofluidics, 2014, 16, 275-286.	2.2	26
40	Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. Journal of Industrial and Engineering Chemistry, 2020, 92, 18-40.	5.8	24
41	Formation dynamics of elastic droplets in a microfluidic T-junction. Chemical Engineering Research and Design, 2018, 139, 188-196.	5.6	23
42	Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device. Microfluidics and Nanofluidics, 2014, 16, 1047-1055.	2.2	22
43	Bubble coalescence in non-Newtonian fluids in a microfluidic expansion device. Chemical Engineering and Processing: Process Intensification, 2015, 97, 38-44.	3.6	22
44	Dynamics of bubble breakup at a T junction. Physical Review E, 2016, 93, 022802.	2.1	22
45	Mass-Transfer Characteristics of CO ₂ Absorption into Aqueous Solutions of <i>N</i> -Methyldiethanolamine + Diethanolamine in a T-Junction Microchannel. ACS Sustainable Chemistry and Engineering, 2019, 7, 4368-4375.	6.7	22
46	Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions. Chemical Engineering Science, 2021, 229, 116040.	3.8	22
47	The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels. Chemical Engineering Science, 2021, 231, 116300.	3.8	22
48	Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Advances, 2016, 6, 778-785.	3.6	21
49	Formation of droplet and "string of sausages―for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device. Chemical Engineering and Processing: Process Intensification, 2018, 125, 8-17.	3.6	21
50	Critical condition for bubble breakup in a microfluidic flow-focusing junction. Chemical Engineering Science, 2017, 164, 178-187.	3.8	20
51	Volumetric and viscometric properties of binary and ternary mixtures of monoethanolamine, 2-(diethylamino) ethanol and water from (293.15 to 333.15) K. Journal of Chemical Thermodynamics, 2019, 138, 350-365.	2.0	20
52	Breakup dynamics of ferrofluid droplet in a microfluidic T-junction. Journal of Industrial and Engineering Chemistry, 2017, 54, 408-420.	5.8	19
53	Selfâ€similar breakup of viscoelastic thread for droplet formation in flowâ€focusing devices. AICHE Journal, 2017, 63, 5196-5206.	3.6	19
54	Distribution of gas-liquid two-phase flow in parallel microchannels with the splitting of the liquid feed. Chemical Engineering Journal, 2020, 398, 125630.	12.7	19

#	Article	lF	CITATIONS
55	Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime. International Journal of Heat and Mass Transfer, 2021, 176, 121435.	4.8	19
56	Threeâ€dimensional numerical simulation of coalescence and interactions of multiple horizontal bubbles rising in shearâ€ŧhinning fluids. AICHE Journal, 2015, 61, 3528-3546.	3.6	18
57	The minimum in-line coalescence height of bubbles in non-Newtonian fluid. International Journal of Multiphase Flow, 2017, 92, 161-170.	3.4	18
58	The effect of flow distribution on mass transfer of gas-liquid two-phase flow in two parallelized microchannels in a microfluidic loop. International Journal of Heat and Mass Transfer, 2019, 130, 266-273.	4.8	18
59	Dynamics of droplet formation and mechanisms of satellite droplet formation in T-junction microchannel. Chemical Engineering Science, 2022, 248, 117217.	3.8	18
60	The Drag Coefficient and the Shape for a Single Bubble Rising in Non-Newtonian Fluids. Journal of Fluids Engineering, Transactions of the ASME, 2012, 134, .	1.5	17
61	Formation and uniformity of bubbles in highly viscous fluids in symmetric parallel microchannels. Chemical Engineering Science, 2021, 230, 116166.	3.8	17
62	Pressure drop model of gas-liquid flow with mass transfer in tree-typed microchannels. Chemical Engineering Journal, 2020, 397, 125340.	12.7	16
63	Newtonian and Nonâ€Newtonian Flows in Microchannels: Inline Rheological Characterization. Chemical Engineering and Technology, 2016, 39, 987-992.	1.5	15
64	Manipulation of microdroplets at a T-junction: Coalescence and scaling law. Journal of Industrial and Engineering Chemistry, 2018, 65, 272-279.	5.8	15
65	Manipulable Formation of Ferrofluid Droplets in Y-Shaped Flow-Focusing Microchannels. Industrial & Engineering Chemistry Research, 2019, 58, 19226-19238.	3.7	15
66	Breakup dynamics of elastic droplet and stretching of polymeric filament in a T-junction. Chemical Engineering Science, 2019, 206, 212-223.	3.8	15
67	Mechanism of bubble formation in stepâ€emulsification devices. AICHE Journal, 2020, 66, e16777.	3.6	15
68	Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles. Separation and Purification Technology, 2020, 236, 116306.	7.9	15
69	Bubble formation in T-junctions within parallelized microchannels: Effect of viscoelasticity. Chemical Engineering Journal, 2021, 426, 131783.	12.7	15
70	Shear-induced tail breakup of droplets (bubbles) flowing in a straight microfluidic channel. Chemical Engineering Science, 2015, 135, 61-66.	3.8	14
71	Experimental investigation on the breakup dynamics for bubble formation in viscous liquids in a flow-focusing device. Chemical Engineering Science, 2016, 152, 516-527.	3.8	14
72	Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction. Korean Journal of Chemical Engineering, 2019, 36, 21-29.	2.7	14

#	Article	IF	CITATIONS
73	An effective method to facile coalescence of microdroplet in the symmetrical T-junction with expanded convergence. Chemical Engineering Science, 2020, 213, 115389.	3.8	14
74	The breakup dynamics of bubbles stabilized by nanoparticles in a microfluidic Y-junction. Chemical Engineering Science, 2021, 245, 116867.	3.8	14
75	Hydrodynamics and gas-liquid mass transfer in a cross-flow T-junction microchannel: Comparison of two operation modes. Separation and Purification Technology, 2021, 255, 117697.	7.9	13
76	Mass transfer enhancement of CO2 absorption into [Bmim][BF4] aqueous solution in microchannels by heart-shaped grooves. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108536.	3.6	13
77	Effects on droplet generation in step-emulsification microfluidic devices. Chemical Engineering Science, 2021, 246, 116959.	3.8	13
78	Distribution of liquid-liquid two-phase flow and droplet dynamics in asymmetric parallel microchannels. Chemical Engineering Journal, 2022, 441, 136027.	12.7	13
79	Measurement and Correlation of Pressure Drop for Gas-Liquid Two-phase Flow in Rectangular Microchannels. Chinese Journal of Chemical Engineering, 2010, 18, 940-947.	3.5	12
80	Study on the mass transfer of bubble swarms in three different rheological fluids. International Journal of Heat and Mass Transfer, 2012, 55, 6010-6016.	4.8	12
81	Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations. Soft Matter, 2018, 14, 2267-2280.	2.7	12
82	Dynamics of non-Newtonian droplet breakup with partial obstruction in microfluidic Y-junction. Chemical Engineering Science, 2021, 240, 116696.	3.8	12
83	Dynamics and interfacial evolution for bubble breakup in shear-thinning non-Newtonian fluid in microfluidic T-junction. Chemical Engineering Science, 2019, 208, 115158.	3.8	11
84	Gas-liquid distribution and mass transfer of CO2 absorption into sodium glycinate aqueous solution in parallel multi-channel microreactor. International Journal of Heat and Mass Transfer, 2020, 157, 119943.	4.8	11
85	Formation of droplets of shearâ€thinning <scp>nonâ€Newtonian</scp> fluids in a stepâ€emulsification microdevice. AICHE Journal, 2022, 68, e17395.	3.6	11
86	Bubble dynamics and mass transfer enhancement in split–and–recombine (SAR) microreactor with rapid chemical reaction. Separation and Purification Technology, 2022, 287, 120573.	7.9	11
87	Dynamics and formation of alternating droplets under magnetic field at a T-junction. Chemical Engineering Science, 2019, 200, 248-256.	3.8	10
88	Performance and pressure drop of <scp>CO₂</scp> absorption into taskâ€specific and halideâ€free ionic liquids in a microchannel. AICHE Journal, 2022, 68, .	3.6	10
89	Dynamics of partially obstructed breakup of bubbles in microfluidic Yâ€ j unctions. Electrophoresis, 2019, 40, 376-387.	2.4	9
90	CO ₂ Absorption by Liquid Films under Taylor Flow in Serpentine Minichannels. Industrial & Engineering Chemistry Research, 2020, 59, 12250-12261.	3.7	9

#	Article	IF	CITATIONS
91	Bubble formation in a step-emulsification microdevice with parallel microchannels. Chemical Engineering Science, 2020, 224, 115815.	3.8	9
92	Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. Journal of Industrial and Engineering Chemistry, 2022, 106, 469-481.	5.8	9
93	Formation of viscoelastic droplets in a stepâ€emulsification microdevice. AICHE Journal, 2022, 68, .	3.6	9
94	Pressure drop of single phase flow in microchannels and its application in characterizing the apparent rheological property of fluids. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	8
95	Effect of solvent on CO2 absorption performance in the microchannel. Journal of Molecular Liquids, 2022, 357, 119133.	4.9	8
96	Volumetric and Viscometric Properties of Alcohol Amines + Ethanol Binary Mixtures. Journal of Chemical & Engineering Data, 2017, 62, 3261-3273.	1.9	7
97	The effect of liquid viscosity on bubble formation dynamics in a flow-focusing device. International Journal of Multiphase Flow, 2019, 117, 206-211.	3.4	7
98	3D simulation of interaction and drag coefficient of bubbles continuously rising with equilateral triangle arrangement in shear-thinning fluids. International Journal of Multiphase Flow, 2019, 110, 69-81.	3.4	7
99	Flow Distribution and Mass Transfer of Gas–Liquid Flow in Parallel Microchannels with Different Tree-Shaped Distributors: Halving-Width versus Constant-Width. Industrial & Engineering Chemistry Research, 2020, 59, 1327-1335.	3.7	7
100	Volumetric and Viscometric Properties of Maltitol in Glycylglycine Aqueous Solutions at <i>T</i> = 293.15–333.15 K. Journal of Chemical & Engineering Data, 2021, 66, 360-367.	1.9	7
101	Local deformation and coalescence between two equal-sized droplets in a cross-focused microchannel. Chemical Engineering Journal, 2022, 430, 133087.	12.7	7
102	Stability and uniformity of gas–liquid two-phase flow in shear-thinning fluids in parallelized microchannels. Chemical Engineering Journal, 2022, 444, 136679.	12.7	7
103	Self-assembly of droplet swarms and its feedback on droplet generation in a step-emulsification microdevice with parallel microchannels. Chemical Engineering Science, 2022, 256, 117685.	3.8	6
104	Microfluidics in CO2 Capture, Sequestration, and Applications. , 2016, , .		5
105	Interfacial dynamics of the "sausage―wave for glycerol-water solution/ionic liquid ([BMIM][PF6]) two-phase flow in a microfluidic flow-focusing junction. Chemical Engineering and Processing: Process Intensification, 2018, 133, 294-302.	3.6	5
106	Velocity Evolution for the Coalescence of Two In-Line Bubbles Rising in Non-Newtonian Fluids. Theoretical Foundations of Chemical Engineering, 2018, 52, 459-464.	0.7	5
107	Interfacial dynamics of the core-annular flow for glycerol–water solution / ionic liquid ([BMIM][PF6]) two-phase flow in a microfluidic flow-focusing junction. Journal of the Taiwan Institute of Chemical Engineers, 2019, 98, 45-52.	5.3	5
108	Density, viscosity and excess properties of N, N-dimethylethanolamine +2-(ethylamino) ethanol +H2O at TÂ=Â(293.15 to 333.15) K. Journal of Molecular Liquids, 2020, 319, 114095.	4.9	5

#	Article	IF	CITATIONS
109	Controllable Droplet Coalescence in the T-Junction Microchannel with a Funnel-Typed Expansion Chamber. Industrial & Engineering Chemistry Research, 2020, 59, 10298-10307.	3.7	5
110	Mesoscale effect on bubble formation in stepâ€emulsification devices with two parallel microchannels. AICHE Journal, 2021, 67, .	3.6	5
111	Dynamics and modelling of bubble formation in asymmetric parallel microchannels. Chemical Engineering Science: X, 2019, 4, 100039.	1.5	4
112	Bubble formation in a step-emulsification microdevice: hydrodynamic effects in the cavity. Journal of Industrial and Engineering Chemistry, 2021, 94, 127-133.	5.8	4
113	Formation characteristics of Taylor bubbles in a T-junction microchannel with chemical absorption. Chinese Journal of Chemical Engineering, 2022, 46, 214-222.	3.5	4
114	Gas-liquid hydrodynamics with different liquid viscosities in a split-and-recombine microchannel. Chemical Engineering and Processing: Process Intensification, 2022, 177, 108988.	3.6	4
115	Interaction and drag coefficient of three horizontal bubbles with different sizes rising in the shear-thinning fluids. International Journal of Multiphase Flow, 2020, 125, 103214.	3.4	3
116	Formation dynamics and size prediction of bubbles for slurry system in T-shape microchannel. Chinese Journal of Chemical Engineering, 2022, 45, 153-161.	3.5	3
117	Coalescence dynamics of two droplets in T-junction microchannel with a lantern-shaped expansion chamber. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104193.	5.3	3
118	Distribution of liquid–liquid two-phase flow in branching T-junction microchannels. Chemical Engineering Journal, 2022, 431, 133939.	12.7	3
119	Early stage of externally driven filling of viscous fluids within a microfluidic pore-doublet network. Physics of Fluids, 2022, 34, .	4.0	3
120	Effects of gas concentration on hydrodynamics of gas absorption in a microchannel. AICHE Journal, 2022, 68, .	3.6	3
121	Computational Fluid Dynamics Simulation of Generation and Coalescence of Bubbles in Nonâ€Newtonian Fluids. Chemical Engineering and Technology, 2018, 41, 541-552.	1.5	2
122	Volumetric and Viscometric Properties for Binary and Ternary Solutions of Diethylenetriamine, <i>N</i> , <i>N</i> -Diethylethanolamine, and Water. Journal of Chemical & Engineering Data, 2020, 65, 239-254.	1.9	2
123	Coalescence dynamics of two droplets of different viscosities in T-junction microchannel with a funnel-typed expansion chamber. Chinese Journal of Chemical Engineering, 2021, 38, 43-52.	3.5	2
124	Volumetric and Viscometric Properties of Sugar Alcohols in Glycylglycine–Water Mixtures from 293.15 to 333.15 K. Journal of Chemical & Engineering Data, 2022, 67, 305-320.	1.9	2
125	Bubble formation in high-viscosity liquids in step-emulsification microdevices. Journal of Industrial and Engineering Chemistry, 2022, 114, 221-232.	5.8	2
126	Effects of the resultant force due to two-phase density difference on droplet formation in a step-emulsification microfluidic device. Journal of Industrial and Engineering Chemistry, 2022, 110, 564-575.	5.8	1

#	Article	IF	CITATIONS
127	Slug bubble deformation and its influence on bubble breakup dynamics in microchannel. Chinese Journal of Chemical Engineering, 2022, 50, 66-74.	3.5	1