Shyamal Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adhesive hydrophobicity of Cu ₂ 0 nano-columnar arrays induced by nitrogen ion irradiation. Soft Matter, 2015, 11, 9211-9217.	2.7	24
2	Superhydrophobic to hydrophilic transition of multi-walled carbon nanotubes induced by Na + ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2017, 413, 31-36.	1.4	23
3	Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation. Nanotechnology, 2015, 26, 235601.	2.6	21
4	Ion beam engineered hydrogen titanate nanotubes for superior energy storage application. Electrochimica Acta, 2021, 371, 137774.	5.2	19
5	Superior electrical conduction of a water repelling 3D interconnected nano-network. Journal of Materials Chemistry C, 2018, 6, 1951-1958.	5.5	18
6	Joining of two different ceramic nanomaterials for bottom-up fabrication of heterojunction devices. Applied Surface Science, 2019, 478, 651-660.	6.1	18
7	Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment. Applied Surface Science, 2012, 258, 7016-7020.	6.1	17
8	Discrete Single Crystalline Titanium Oxide Nanoparticle Formation from a Two-Dimensional Nanowelded Network. Crystal Growth and Design, 2017, 17, 2660-2666.	3.0	16
9	Nanoscale modification of one-dimensional single-crystalline cuprous oxide. Nanotechnology, 2019, 30, 365304.	2.6	14
10	Tunable Wettability and Conductivity of the Graphene Oxide Surface with Insights from Density Functional Theory and Molecular Dynamics Investigations. Journal of Physical Chemistry C, 2020, 124, 10541-10549.	3.1	13
11	Moisture repelling perovskite nanowires for higher stability in energy applications. Applied Surface Science, 2020, 527, 146683.	6.1	13
12	Broad Beam-Induced Fragmentation and Joining of Tungsten Oxide Nanorods: Implications for Nanodevice Fabrication and the Development of Fusion Reactors. ACS Applied Nano Materials, 2020, 3, 9064-9075.	5.0	10
13	Amorphization and recrystallization of single-crystalline hydrogen titanate nanowires by N+ ion irradiation. Journal of Applied Physics, 2014, 115, 233505.	2.5	9
14	Temporal wetting property of "Micro―versus "Nano―rods of ZnO grown using the pressure dependent aqueous solution method. New Journal of Chemistry, 2015, 39, 8993-8998.	2.8	9
15	Formation of core-shell nanostructure through wrapping of cuprous oxide nanowires by hydrogen titanate nanotubes. Radiation Physics and Chemistry, 2022, 196, 110103.	2.8	7
16	Electron Beam Modulated Wettability and Electrical Conductivity of Hydrogen Titanate Nanowires. Journal of Physical Chemistry C, 2021, 125, 16191-16199.	3.1	6
17	Tuning surface wettability of molybdenum oxide nanorod mesh by low energy ion beam irradiation. Radiation Physics and Chemistry, 2021, 188, 109649.	2.8	4
18	Tuning wettability of hydrogen titanate nanowire mesh by Na+ irradiation. AIP Conference Proceedings, 2018, , .	0.4	3

1

#	Article	IF	CITATIONS
19	Ion beam joining of ceramic and carbon-based nanostructures. Applied Surface Science, 2021, 554, 149616.	6.1	2

20 Ion beam joining of similar and dissimilar materials. , 2022, , 79-123.