Emmanouil Kioupakis

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8081590/emmanouil-kioupakis-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

92 3,561 32 58 g-index

101 4,207 6 svt. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
92	Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization <i>Advanced Materials</i> , 2022 , e2201387	24	5
91	Experimental and theoretical study of hole scattering in RF sputtered p-type Cu2O thin films. <i>Applied Physics Letters</i> , 2022 , 120, 112105	3.4	O
90	Memristors Based on (Zr, Hf, Nb, Ta, Mo, W) High-Entropy Oxides. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001258	6.4	9
89	Engineering new limits to magnetostriction through metastability in iron-gallium alloys. <i>Nature Communications</i> , 2021 , 12, 2757	17.4	2
88	Toward the predictive discovery of ambipolarly dopable ultra-wide-band-gap semiconductors: The case of rutile GeO2. <i>Applied Physics Letters</i> , 2021 , 118, 260501	3.4	7
87	Semiconducting character of LaN: Magnitude of the bandgap and origin of the electrical conductivity. <i>AIP Advances</i> , 2021 , 11, 065312	1.5	1
86	Oxygen defect dominated photoluminescence emission of ScxAl1NN grown by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2021 , 118, 032102	3.4	14
85	Effect of Stacking Orientation on the Electronic and Optical Properties of Polar 2D III-Nitride Bilayers. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 16837-16842	3.8	О
84	Phonon- and defect-limited electron and hole mobility of diamond and cubic boron nitride: A critical comparison. <i>Applied Physics Letters</i> , 2021 , 119, 062101	3.4	4
83	Cation-size mismatch as a predictive descriptor for structural distortion, configurational disorder, and valence-band splitting in II-IV-N2 semiconductors. <i>Applied Physics Letters</i> , 2021 , 119, 132104	3.4	1
82	Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers. <i>Nano Letters</i> , 2021 , 21, 8409-8417	11.5	3
81	Nanoscale AlGaN and BN: Molecular beam epitaxy, properties, and device applications. <i>Semiconductors and Semimetals</i> , 2021 , 153-189	0.6	1
80	Electron and hole mobility of rutile GeO2 from first principles: An ultrawide-bandgap semiconductor for power electronics. <i>Applied Physics Letters</i> , 2020 , 117, 182104	3.4	10
79	Atomistic analysis of radiative recombination rate, Stokes shift, and density of states in c-plane InGaN/GaN quantum wells. <i>Applied Physics Letters</i> , 2020 , 116, 181104	3.4	3
78	Hyperspectral absorption of semiconductor monolayer crystals. <i>Applied Physics Letters</i> , 2020 , 116, 1811	10334	2
77	Semiconducting High-Entropy Chalcogenide Alloys with Ambi-ionic Entropy Stabilization and Ambipolar Doping. <i>Chemistry of Materials</i> , 2020 , 32, 6070-6077	9.6	18
76	Optical properties of cubic boron arsenide. <i>Applied Physics Letters</i> , 2020 , 116, 141903	3.4	6

(2019-2020)

75	Boron arsenide heterostructures: lattice-matched heterointerfaces and strain effects on band alignments and mobility. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	10
74	High electron mobility of AlxGa1NN evaluated by unfolding the DFT band structure. <i>Applied Physics Letters</i> , 2020 , 117, 242105	3.4	7
73	Monolayer GaN excitonic deep ultraviolet light emitting diodes. <i>Applied Physics Letters</i> , 2020 , 116, 013	10314	17
72	Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide-Bandgap Semiconductors. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000337	6.4	7
71	Thermal conductivity of rutile germanium dioxide. <i>Applied Physics Letters</i> , 2020 , 117, 102106	3.4	10
70	Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2020 , 117, 072105	3.4	6
69	Limitations of In2O3 as a transparent conducting oxide. <i>Applied Physics Letters</i> , 2019 , 115, 082105	3.4	12
68	Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells. <i>Applied Physics Letters</i> , 2019 , 115, 131101	3.4	16
67	Deep Ultraviolet Luminescence Due to Extreme Confinement in Monolayer GaN/Al(Ga)N Nanowire and Planar Heterostructures. <i>Nano Letters</i> , 2019 , 19, 7852-7858	11.5	20
66	Vibrational and electron-phonon coupling properties of EGa2O3 from first-principles calculations: Impact on the mobility and breakdown field. <i>AIP Advances</i> , 2019 , 9, 015313	1.5	27
65	Band structure and carrier effective masses of boron arsenide: Effects of quasiparticle and spin-orbit coupling corrections. <i>Applied Physics Letters</i> , 2019 , 114, 022101	3.4	31
64	Rutile GeO2: An ultrawide-band-gap semiconductor with ambipolar doping. <i>Applied Physics Letters</i> , 2019 , 114, 102104	3.4	18
63	Lattice-constant and band-gap tuning in wurtzite and zincblende BInGaN alloys. <i>Journal of Applied Physics</i> , 2019 , 126, 055702	2.5	3
62	Predictive Simulations for Tuning Electronic and Optical Properties of SubPc Derivatives. <i>Journal of Electronic Materials</i> , 2019 , 48, 2962-2970	1.9	3
61	Alloy-Free Band Gap Tuning across the Visible Spectrum. <i>Physical Review Letters</i> , 2019 , 122, 256403	7.4	27
60	Quasiparticle band structure and optical properties of rutile GeO2, an ultra-wide-band-gap semiconductor. <i>Journal of Applied Physics</i> , 2019 , 126, 085703	2.5	13
59	Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy. <i>Physical Review Materials</i> , 2019 , 3,	3.2	19
58	Magnetic frustration control through tunable stereochemically driven disorder in entropy-stabilized oxides. <i>Physical Review Materials</i> , 2019 , 3,	3.2	18

57	Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM. <i>ACS Applied Materials & District Materials & Dis</i>	9.5	42
56	Impact of the stacking sequence on the bandgap and luminescence properties of bulk, bilayer, and monolayer hexagonal boron nitride. <i>APL Materials</i> , 2019 , 7, 021106	5.7	20
55	BAlGaN alloys nearly lattice-matched to AlN for efficient UV LEDs. <i>Applied Physics Letters</i> , 2019 , 115, 231103	3.4	4
54	Relativistic quasiparticle band structures of Mg2Si, Mg2Ge, and Mg2Sn: Consistent parameterization and prediction of Seebeck coefficients. <i>Journal of Applied Physics</i> , 2018 , 123, 085114	2.5	11
53	Surface phonons in the topological insulators Bi2Se3 and Bi2Te3. <i>Solid State Communications</i> , 2018 , 271, 1-5	1.6	7
52	Effect of growth temperature on the structural and optical properties of few-layer hexagonal boron nitride by molecular beam epitaxy. <i>Optics Express</i> , 2018 , 26, 23031-23039	3.3	14
51	Insights on the Synthesis, Crystal and Electronic Structures, and Optical and Thermoelectric Properties of SrSb HfSe Orthorhombic Perovskite. <i>Inorganic Chemistry</i> , 2018 , 57, 7402-7411	5.1	10
50	Radiative and Auger recombination processes in indium nitride. <i>Applied Physics Letters</i> , 2018 , 112, 2511	0384	12
49	Point defects and dopants of boron arsenide from first-principles calculations: Donor compensation and doping asymmetry. <i>Applied Physics Letters</i> , 2018 , 113, 212101	3.4	26
48	Electronic and Optical Properties of Two-Dimensional IPbO from First Principles. <i>Chemistry of Materials</i> , 2018 , 30, 7124-7129	9.6	11
47	Unexpectedly Strong Auger Recombination in Halide Perovskites. <i>Advanced Energy Materials</i> , 2018 , 8, 1801027	21.8	36
46	Sustainable p-type copper selenide solar material with ultra-large absorption coefficient. <i>Chemical Science</i> , 2018 , 9, 5405-5414	9.4	13
45	Electrochemical Window of the Li-Ion Solid Electrolyte Li7La3Zr2O12. ACS Energy Letters, 2017, 2, 462-4	4 68 .1	164
44	Electronic and optical properties of oxygen vacancies in amorphous TaO from first principles. <i>Nanoscale</i> , 2017 , 9, 1120-1127	7.7	34
43	Electronic and Optical Properties of Two-Dimensional GaN from First-Principles. <i>Nano Letters</i> , 2017 , 17, 7345-7349	11.5	101
42	Impact of carrier localization on recombination in InGaN quantum wells and the efficiency of nitride light-emitting diodes: Insights from theory and numerical simulations. <i>Applied Physics Letters</i> , 2017 , 111, 113501	3.4	44
41	Effect of strain on band alignment of GaAsSb/GaAs quantum wells. <i>Journal of Applied Physics</i> , 2017 , 122, 045703	2.5	7
40	BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. <i>Applied Physics Letters</i> , 2017 , 111, 211107	3.4	14

(2015-2017)

39	Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering. <i>Advanced Materials</i> , 2017 , 29, 1701475	24	35
38	Protecting the properties of monolayer MoSIbn silicon based substrates with an atomically thin buffer. <i>Scientific Reports</i> , 2016 , 6, 20890	4.9	47
37	Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores. <i>ACS Nano</i> , 2016 , 10, 3571-9	16.7	106
36	2016,		1
35	Stabilization of orthorhombic phase in single-crystal ZnSnN2 films. <i>AIP Advances</i> , 2016 , 6, 075019	1.5	32
34	Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. <i>Applied Physics Letters</i> , 2016 , 109, 241102	3.4	53
33	First-principles calculations of the near-edge optical properties of EGa2O3. <i>Applied Physics Letters</i> , 2016 , 109, 212104	3.4	51
32	Predicting and Designing Optical Properties of Inorganic Materials. <i>Annual Review of Materials Research</i> , 2015 , 45, 491-518	12.8	45
31	Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. <i>Nano Letters</i> , 2015 , 15, 6926-31	11.5	231
30	Auger recombination in sodium-iodide scintillators from first principles. <i>Applied Physics Letters</i> , 2015 , 106, 141901	3.4	7
29	Frenkel-like Wannier-Mott excitons in few-layer PbI2. <i>Physical Review B</i> , 2015 , 91,	3.3	45
28	Designing interchain and intrachain properties of conjugated polymers for latent optical information encoding. <i>Chemical Science</i> , 2015 , 6, 6980-6985	9.4	10
27	Electronic and Optical Properties of Nanoporous Silicon for Solar-Cell Applications. <i>ACS Photonics</i> , 2015 , 2, 208-215	6.3	36
26	Pb7Bi4Se13: a lillianite homologue with promising thermoelectric properties. <i>Inorganic Chemistry</i> , 2015 , 54, 746-55	5.1	50
25	Theoretical limits of thermoelectric figure of merit in n-type TiO2 polymorphs. <i>Physical Review B</i> , 2015 , 91,	3.3	26
24	First-principles calculations of indirect Auger recombination in nitride semiconductors. <i>Physical Review B</i> , 2015 , 92,	3.3	57
23	Free-carrier absorption in transparent conducting oxides: Phonon and impurity scattering in SnO2. <i>Physical Review B</i> , 2015 , 92,	3.3	28
22	Quasiparticle band structures and thermoelectric transport properties of p-type SnSe. <i>Journal of Applied Physics</i> , 2015 , 117, 065103	2.5	111

21	Polarization-Dependent Raman Spectroscopy of Epitaxial TiO2(B) Thin Films. <i>Chemistry of Materials</i> , 2015 , 27, 7896-7902	9.6	23
20	Visible-wavelength polarized-light emission with small-diameter InN nanowires. <i>Nano Letters</i> , 2014 , 14, 3709-14	11.5	29
19	Low-temperature structural and transport anomalies in Cu2Se. Physical Review B, 2014, 89,	3.3	46
18	Auger Recombination in GaAs from First Principles. ACS Photonics, 2014, 1, 643-646	6.3	26
17	First-principles study of high-field-related electronic behavior of group-III nitrides. <i>Physical Review B</i> , 2014 , 90,	3.3	15
16	Electronic properties of tantalum pentoxide polymorphs from first-principles calculations. <i>Applied Physics Letters</i> , 2014 , 105, 202108	3.4	23
15	Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors. <i>Chemistry of Materials</i> , 2013 , 25, 4663-4670	9.6	151
14	Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. <i>New Journal of Physics</i> , 2013 , 15, 125006	2.9	85
13	Phonon-assisted optical absorption in silicon from first principles. <i>Physical Review Letters</i> , 2012 , 108, 167402	7.4	110
12	Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes. <i>Applied Physics Letters</i> , 2012 , 101, 231107	3.4	137
11	Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. <i>Applied Physics Letters</i> , 2012 , 100, 011914	3.4	78
10	First-principles optical spectra for F centers in MgO. <i>Physical Review Letters</i> , 2012 , 108, 126404	7.4	131
9	Quasiparticle effects in the bulk and surface-state bands of Bi2Se3 and Bi2Te3 topological insulators. <i>Physical Review B</i> , 2012 , 85,	3.3	101
8	Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. <i>Applied Physics Letters</i> , 2011 , 98, 161107	3.4	388
7	Quasiparticle electronic structure of bismuth telluride in the GW approximation. <i>Physical Review B</i> , 2010 , 82,	3.3	50
6	Free-carrier absorption in nitrides from first principles. <i>Physical Review B</i> , 2010 , 81,	3.3	97
5	Determination of Internal Loss in Nitride Lasers from First Principles. <i>Applied Physics Express</i> , 2010 , 3, 082101	2.4	56
4	Spatially resolved electronic and vibronic properties of single diamondoid molecules. <i>Nature Materials</i> , 2008 , 7, 38-42	27	80

LIST OF PUBLICATIONS

3	GW quasiparticle corrections to the LDA+U G GA+U electronic structure of bcc hydrogen. <i>Physical Review B</i> , 2008 , 77,	3.3	29
2	Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors with predictive atomistic calculations. <i>Journal of Materials Research</i> ,1	2.5	1
1	Energy Conversion: Solid-State Lighting231-259		2