
Matthew D Breyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PROSTANOIDRECEPTORS: Subtypes and Signaling. Annual Review of Pharmacology and Toxicology, 2001, 41, 661-690.	4.2	927
2	Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction Journal of Clinical Investigation, 1994, 94, 2504-2510.	3.9	777
3	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	3.0	582
4	Thiazolidinediones expand body fluid volume through PPARÎ ³ stimulation of ENaC-mediated renal salt absorption. Nature Medicine, 2005, 11, 861-866.	15.2	573
5	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 27-45.	3.0	488
6	Mesangial cell, glomerular and renal vascular responses to endothelin in the rat kidney. Elucidation of signal transduction pathways Journal of Clinical Investigation, 1989, 83, 336-342.	3.9	387
7	Salt–sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nature Medicine, 1999, 5, 217-220.	15.2	374
8	Endothelial Nitric Oxide Synthase Deficiency Produces Accelerated Nephropathy in Diabetic Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 2664-2669.	3.0	310
9	Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. American Journal of Physiology - Renal Physiology, 2004, 286, F590-F596.	1.3	285
10	Sirt1 activation protects the mouse renal medulla from oxidative injury. Journal of Clinical Investigation, 2010, 120, 1056-1068.	3.9	273
11	Peroxisome proliferator-activated receptors (PPARs): Novel therapeutic targets in renal disease. Kidney International, 2001, 60, 14-30.	2.6	257
12	Characterization of Susceptibility of Inbred Mouse Strains to Diabetic Nephropathy. Diabetes, 2005, 54, 2628-2637.	0.3	250
13	Physiological regulation of cyclooxygenase-2 in the kidney. American Journal of Physiology - Renal Physiology, 2001, 281, F1-F11.	1.3	248
14	Physiological Regulation of Prostaglandins in the Kidney. Annual Review of Physiology, 2008, 70, 357-377.	5.6	242
15	Prostaglandin E receptors and the kidney. American Journal of Physiology - Renal Physiology, 2000, 279, F12-F23.	1.3	233
16	G Protein–Coupled Prostanoid Receptors and the Kidney. Annual Review of Physiology, 2001, 63, 579-605.	5.6	218
17	The next generation of therapeutics for chronic kidney disease. Nature Reviews Drug Discovery, 2016, 15, 568-588.	21.5	201
18	Long-Term Treatment of Glucagon-Like Peptide-1 Analog Exendin-4 Ameliorates Diabetic Nephropathy through Improving Metabolic Anomalies in db/db Mice. Journal of the American Society of Nephrology: JASN, 2007, 18, 1227-1238.	3.0	195

#	Article	IF	CITATIONS
19	Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. Journal of Clinical Investigation, 2002, 110, 61-69.	3.9	194
20	Conditional Knockout of Macrophage PPARγIncreases Atherosclerosis in C57BL/6 and Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1647-1653.	1.1	173
21	Utility of endogenous creatinine clearance as a measure of renal function in mice. Kidney International, 2004, 65, 1959-1967.	2.6	170
22	Deficiency of Endothelial Nitric-Oxide Synthase Confers Susceptibility to Diabetic Nephropathy in Nephropathy-Resistant Inbred Mice. American Journal of Pathology, 2007, 170, 1473-1484.	1.9	161
23	PKHD1 protein encoded by the gene for autosomal recessive polycystic kidney disease associates with basal bodies and primary cilia in renal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2311-2316.	3.3	160
24	Cyclooxygenase-2–selective inhibitors impair glomerulogenesis and renal cortical development. Kidney International, 2000, 57, 414-422.	2.6	153
25	Reduction of Renal Superoxide Dismutase in Progressive Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 1303-1313.	3.0	150
26	Enhanced Expression of Cyclooxygenase-2 in High Grade Human Transitional Cell Bladder Carcinomas. American Journal of Pathology, 2000, 157, 29-35.	1.9	144
27	Expression of Peroxisome Proferator-Activated Receptor γ (PPARγ) in Human Transitional Bladder Cancer and its Role in Inducing Cell Death. Neoplasia, 1999, 1, 330-339.	2.3	143
28	Circulating αKlotho influences phosphate handling by controlling FGF23 production. Journal of Clinical Investigation, 2012, 122, 4710-4715.	3.9	135
29	Accelerated Diabetic Nephropathy in Mice Lacking the Peroxisome Proliferator-Activated Receptor Â. Diabetes, 2006, 55, 885-893.	0.3	133
30	Dehydration activates an NF-κB–driven, COX2-dependent survival mechanism in renal medullary interstitial cells. Journal of Clinical Investigation, 2000, 106, 973-982.	3.9	129
31	Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. Journal of Clinical Investigation, 2006, 116, 1696-1702.	3.9	128
32	Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. Journal of Clinical Investigation, 2003, 112, 76-82.	3.9	127
33	Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans. American Journal of Physiology - Renal Physiology, 1997, 273, F1013-F1022.	1.3	118
34	Prostaglandin E2-EP4 Receptor Promotes Endothelial Cell Migration via ERK Activation and Angiogenesis in Vivo. Journal of Biological Chemistry, 2007, 282, 16959-16968.	1.6	118
35	Upregulation of type I collagen by TGF-β in mesangial cells is blocked by PPARγ activation. American Journal of Physiology - Renal Physiology, 2002, 282, F639-F648.	1.3	117
36	Prostaglandin E2 inhibits sodium transport in rabbit cortical collecting duct by increasing intracellular calcium Journal of Clinical Investigation, 1991, 87, 1992-1998.	3.9	117

#	Article	IF	CITATIONS
37	Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse). American Journal of Physiology - Renal Physiology, 2003, 285, F19-F32.	1.3	116
38	Prostaglandin E ₂ -Mediated Attenuation of Mesocortical Dopaminergic Pathway Is Critical for Susceptibility to Repeated Social Defeat Stress in Mice. Journal of Neuroscience, 2012, 32, 4319-4329.	1.7	115
39	Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. American Journal of Physiology - Renal Physiology, 2005, 288, F642-F649.	1.3	113
40	Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. Journal of Clinical Investigation, 2002, 110, 61-69.	3.9	113
41	Cyclooxygenase 2 and the kidney. Current Opinion in Nephrology and Hypertension, 2001, 10, 89-98.	1.0	111
42	Differential Expression of the Intermediate Filament Protein Nestin during Renal Development and Its Localization in Adult Podocytes. Journal of the American Society of Nephrology: JASN, 2006, 17, 1283-1291.	3.0	100
43	Macrophage EP4 Deficiency Increases Apoptosis and Suppresses Early Atherosclerosis. Cell Metabolism, 2008, 8, 492-501.	7.2	97
44	Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma. Neoplasia, 2001, 3, 287-303.	2.3	96
45	Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. Journal of Clinical Investigation, 2007, 117, 2496-2505.	3.9	94
46	Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 2004, 40, 7-14.	0.8	90
47	Markers of early progressive renal decline in typeÂ2Âdiabetes suggest different implications forÂetiological studies and prognostic testsÂdevelopment. Kidney International, 2018, 93, 1198-1206.	2.6	88
48	Prostaglandin receptors: their role in regulating renal function. Current Opinion in Nephrology and Hypertension, 2000, 9, 23-29.	1.0	87
49	Cyclooxygenase-2 expression is associated with the renal macula densa of patients with Bartter-like syndrome. Kidney International, 2000, 58, 2420-2424.	2.6	87
50	Peroxisome Proliferator-activated Receptor δActivation Promotes Cell Survival following Hypertonic Stress. Journal of Biological Chemistry, 2002, 277, 21341-21345.	1.6	86
51	Molecular Cloning, Enzymatic Characterization, Developmental Expression, and Cellular Localization of a Mouse Cytochrome P450 Highly Expressed in Kidney. Journal of Biological Chemistry, 1999, 274, 17777-17788.	1.6	83
52	Characterization of Murine Vasopressor and Vasodepressor Prostaglandin E ₂ Receptors. Hypertension, 2000, 35, 1129-1134.	1.3	82
53	Membrane-associated PGE synthase-1 (mPGES-1) is coexpressed with both COX-1 and COX-2 in the kidney. Kidney International, 2004, 65, 1205-1213.	2.6	82
54	Hypertonic Stress Activates Glycogen Synthase Kinase 3β-mediated Apoptosis of Renal Medullary Interstitial Cells, Suppressing an NFκB-driven Cyclooxygenase-2-dependent Survival Pathway. Journal of Biological Chemistry, 2004, 279, 3949-3955.	1.6	80

#	Article	IF	CITATIONS
55	Regulation of renal function by prostaglandin E receptors. Kidney International, 1998, 54, S88-S94.	2.6	78
56	Differentiation of Cyclooxygenase 1- and 2–Derived Prostanoids in Mouse Kidney and Aorta. Hypertension, 2006, 48, 323-328.	1.3	78
57	Expression and Molecular Pharmacology of the Mouse CRTH2 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 463-470.	1.3	76
58	Cytochrome P450 CYP2J9, a New Mouse Arachidonic Acid ω-1 Hydroxylase Predominantly Expressed in Brain. Journal of Biological Chemistry, 2001, 276, 25467-25479.	1.6	75
59	Overexpression of Cyclooxygenase-2 Predisposes to Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2007, 18, 551-559.	3.0	73
60	Mapping the single-cell transcriptomic response of murine diabetic kidney disease to therapies. Cell Metabolism, 2022, 34, 1064-1078.e6.	7.2	72
61	In situ hybridization and localization of mRNA for the rabbit prostaglandin EP3 receptor. Kidney International, 1993, 44, 1372-1378.	2.6	71
62	Peroxisome Proliferator–Activated Receptor α/γ Dual Agonist Tesaglitazar Attenuates Diabetic Nephropathy indb/dbMice. Diabetes, 2007, 56, 2036-2045.	0.3	70
63	Epidermal growth factor inhibits the hydroosmotic effect of vasopressin in the isolated perfused rabbit cortical collecting tubule Journal of Clinical Investigation, 1988, 82, 1313-1320.	3.9	70
64	Peroxisome proliferator-activated receptor-γ activity is associated with renal microvasculature. American Journal of Physiology - Renal Physiology, 2001, 281, F1036-F1046.	1.3	66
65	Urogenital distribution of a mouse membrane-associated prostaglandin E2 synthase. American Journal of Physiology - Renal Physiology, 2001, 281, F1173-F1177.	1.3	63
66	Update on Cyclooxygenase-2 Inhibitors. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 236-245.	2.2	63
67	Markers of glycemic control in the mouse: comparisons of 6-h- and overnight-fasted blood glucoses to Hb A _{1c} . American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E981-E986.	1.8	63
68	Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. Journal of Clinical Investigation, 2003, 112, 76-82.	3.9	62
69	The role of PPARs in the transcriptional control of cellular processes. Drug News and Perspectives, 2002, 15, 147.	1.9	62
70	Apoptosis of the Thick Ascending Limb Results in Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2008, 19, 1538-1546.	3.0	61
71	A prospective study of multiple protein biomarkers to predict progression in diabetic chronic kidney disease. Nephrology Dialysis Transplantation, 2014, 29, 2293-2302.	0.4	61
72	Cytochrome P450 metabolites of arachidonic acid are potent inhibitors of vasopressin action on rabbit cortical collecting duct Journal of Clinical Investigation, 1989, 84, 1805-1812.	3.9	60

#	Article	IF	CITATIONS
73	COX2 Activity Promotes Organic Osmolyte Accumulation and Adaptation of Renal Medullary Interstitial Cells to Hypertonic Stress. Journal of Biological Chemistry, 2003, 278, 19352-19357.	1.6	58
74	Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice. Journal of Clinical Investigation, 2015, 126, 695-705.	3.9	56
75	A Maladaptive Role for EP4 Receptors in Podocytes. Journal of the American Society of Nephrology: JASN, 2010, 21, 1678-1690.	3.0	55
76	Endothelin-1 receptor antagonist: Effects on endothelin- and cyclosporine-treated mesangial cells. Kidney International, 1992, 41, 1713-1719.	2.6	51
77	Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule Journal of Clinical Investigation, 1987, 80, 590-593.	3.9	51
78	Contribution of prostaglandin EP ₂ receptors to renal microvascular reactivity in mice. American Journal of Physiology - Renal Physiology, 2002, 283, F415-F422.	1.3	50
79	Diabetic nephropathy: Of mice and men. Advances in Chronic Kidney Disease, 2005, 12, 128-145.	0.6	50
80	Inactivation of the E-Prostanoid 3 Receptor Attenuates the Angiotensin II Pressor Response via Decreasing Arterial Contractility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3024-3032.	1.1	49
81	Liver X receptor-α mediates cholesterol efflux in glomerular mesangial cells. American Journal of Physiology - Renal Physiology, 2004, 287, F886-F895.	1.3	48
82	Glomerular injury is exacerbated in diabetic integrin $\hat{l}\pm 1$ -null mice. Kidney International, 2006, 70, 460-470.	2.6	47
83	Selective targeting of cyclooxygenase-2 reveals its role in renal medullary interstitial cell survival. American Journal of Physiology - Renal Physiology, 1999, 277, F352-F359.	1.3	45
84	Developing Treatments for Chronic Kidney Disease in the 21st Century. Seminars in Nephrology, 2016, 36, 436-447.	0.6	45
85	Cellular mechanisms of prostaglandin E2 and vasopressin interactions in the collecting duct. Kidney International, 1990, 38, 618-624.	2.6	44
86	Cyclooxygenase-2 selective inhibitors and the kidney. Current Opinion in Critical Care, 2001, 7, 393-400.	1.6	43
87	Single Amino Acid Substitution in Aquaporin 11 Causes Renal Failure. Journal of the American Society of Nephrology: JASN, 2008, 19, 1955-1964.	3.0	43
88	Better nephrology for mice—and man. Kidney International, 2010, 77, 487-489.	2.6	43
89	Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. American Journal of Physiology - Renal Physiology, 2006, 290, F1065-F1073.	1.3	42
90	Structureâ€Function Analyses of Eicosanoid Receptors: Physiologic and Therapeutic Implications. Annals of the New York Academy of Sciences, 2000, 905, 221-231.	1.8	40

#	Article	IF	CITATIONS
91	Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys. MAbs, 2016, 8, 969-982.	2.6	40
92	Cyclooxygenase-1 Deficiency in Bone Marrow Cells Increases Early Atherosclerosis in Apolipoprotein E– and Low-Density Lipoprotein Receptor–Null Mice. Circulation, 2006, 113, 108-117.	1.6	38
93	Urine concentrating defect in prostaglandin EP1-deficient mice. American Journal of Physiology - Renal Physiology, 2007, 292, F868-F875.	1.3	38
94	Improved clinical trial enrollment criterion toÂidentify patients with diabetes at risk of end-stage renal disease. Kidney International, 2017, 92, 258-266.	2.6	38
95	Differential, inducible gene targeting in renal epithelia, vascular endothelium, and viscera of Mx1Cre mice. American Journal of Physiology - Renal Physiology, 2003, 284, F411-F417.	1.3	36
96	Roles of Lipid Mediators in Kidney Injury. Seminars in Nephrology, 2007, 27, 338-351.	0.6	36
97	Feedback inhibition of cyclic adenosine monophosphate-stimulated Na+ transport in the rabbit cortical collecting duct via Na(+)-dependent basolateral Ca++ entry Journal of Clinical Investigation, 1991, 88, 1502-1510.	3.9	36
98	Expression of the prostaglandin F receptor (FP) gene along the mouse genitourinary tract. American Journal of Physiology - Renal Physiology, 2003, 284, F1164-F1170.	1.3	35
99	Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl-/base exchange Journal of Clinical Investigation, 1989, 84, 996-1004.	3.9	35
100	Anti sense DNA down-regulates proteins kinase C-epsilon and enhances vasopressin-stimulated Na+ absorption in rabbit cortical collecting duct Journal of Clinical Investigation, 1995, 95, 2749-2756.	3.9	35
101	Cyclooxygenase-2–Dependent Prostacyclin Formation Is Regulated by Low Density Lipoprotein Cholesterol In Vitro. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 983-988.	1.1	34
102	Targeting VE-PTP phosphatase protects the kidney from diabetic injury. Journal of Experimental Medicine, 2019, 216, 936-949.	4.2	34
103	EP1â^'/â^' mice have enhanced osteoblast differentiation and accelerated fracture repair. Journal of Bone and Mineral Research, 2011, 26, 792-802.	3.1	33
104	Characterization of a Rabbit Kidney Prostaglandin F2α Receptor Exhibiting Gi-restricted Signaling That Inhibits Water Absorption in the Collecting Duct. Journal of Biological Chemistry, 2005, 280, 35028-35037.	1.6	32
105	SOD1, but not SOD3, deficiency accelerates diabetic renal injury in C57BL/6-Ins2 diabetic mice. Metabolism: Clinical and Experimental, 2012, 61, 1714-1724.	1.5	31
106	Functional and molecular aspects of prostaglandin E receptors in the cortical collecting duct. Canadian Journal of Physiology and Pharmacology, 1995, 73, 172-179.	0.7	30
107	Mineralocorticoid regulation of cyclooxygenase-2 expression in rat renal medulla. American Journal of Physiology - Renal Physiology, 2002, 283, F509-F516.	1.3	27
108	Expression of mouse membrane-associated prostaglandin E2 synthase-2 (mPGES-2) along the urogenital tract. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 1459-1468.	1.2	27

#	Article	IF	CITATIONS
109	Overcoming Barriers in Kidney Health—Forging a Platform for Innovation. Journal of the American Society of Nephrology: JASN, 2016, 27, 1902-1910.	3.0	27
110	Generation and functional confirmation of a conditional null PPAR? allele in mice. Genesis, 2002, 32, 134-137.	0.8	26
111	Defective expression of Tamm-Horsfall protein/uromodulin in COX-2-deficient mice increases their susceptibility to urinary tract infections. American Journal of Physiology - Renal Physiology, 2005, 289, F49-F60.	1.3	26
112	Expression of nestin in the podocytes of normal and diseased human kidneys. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1761-R1767.	0.9	26
113	Effect of selective cyclooxygenase-2 (COX-2) inhibitor treatment on glucose-stimulated insulin secretion in C57BL/6 mice. Biochemical and Biophysical Research Communications, 2007, 363, 37-43.	1.0	26
114	Importance of the Extracellular Domain for Prostaglandin EP2 Receptor Function. Molecular Pharmacology, 1999, 56, 545-551.	1.0	25
115	Epithelial COX-2 Expression Is Not Regulated By Nitric Oxide in Rodent Renal Cortex. Hypertension, 2002, 39, 848-853.	1.3	25
116	Mouse EP3 α, β, and γ Receptor Variants Reduce Tumor Cell Proliferation and Tumorigenesis in Vivo. Journal of Biological Chemistry, 2008, 283, 12538-12545.	1.6	25
117	Progressive Renal Disease Established by Renin-Coding Adeno-Associated Virus–Driven Hypertension in Diverse Diabetic Models. Journal of the American Society of Nephrology: JASN, 2018, 29, 477-491.	3.0	24
118	Phorbol ester and A23187 have additive but mechanistically separate effects on vasopressin action in rabbit collecting tubule Journal of Clinical Investigation, 1988, 81, 1578-1584.	3.9	24
119	Cloning and expression of the rabbit prostaglandin EP2 receptor. BMC Pharmacology, 2002, 2, 14.	0.4	22
120	Peroxisome Proliferator-Activated Receptor-Alpha Deficiency Protects Aged Mice from Insulin Resistance Induced by High-Fat Diet. American Journal of Nephrology, 2007, 27, 479-482.	1.4	22
121	Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration Journal of Clinical Investigation, 1986, 77, 1650-1660.	3.9	22
122	Profibrotic Circulating Proteins and Risk of Early Progressive Renal Decline in Patients With Type 2 Diabetes With and Without Albuminuria. Diabetes Care, 2020, 43, 2760-2767.	4.3	21
123	Measurement of Glomerular Filtration Rate in Conscious Mice. Methods in Molecular Biology, 2009, 466, 61-72.	0.4	21
124	Generation of a Tenascin-C-CreER2 Knockin Mouse Line for Conditional DNA Recombination in Renal Medullary Interstitial Cells. PLoS ONE, 2013, 8, e79839.	1.1	21
125	Effects of global or targeted deletion of the EP4 receptor on the response of osteoblasts to prostaglandin in vitro and on bone histomorphometry in aged mice. Bone, 2009, 45, 98-103.	1.4	20
126	Molecular cloning and characterization of mouse CYP2J6, an unstable cytochrome P450 isoform. Biochemical Pharmacology, 2002, 64, 1447-1460.	2.0	19

#	Article	IF	CITATIONS
127	Genomic structure and genitourinary expression of mouse cytosolic prostaglandin E2 synthase gene. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1634, 15-23.	1.2	19
128	Role of TGF-alpha in the progression of diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2017, 312, F951-F962.	1.3	19
129	A Sensitized Screen of N-ethyl-N-nitrosourea–Mutagenized Mice Identifies Dominant Mutants Predisposed to Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2007, 18, 103-112.	3.0	18
130	Enhanced pressor response to acute Ang II infusion in mice lacking membrane-associated prostaglandin E2 synthase-1. Acta Pharmacologica Sinica, 2010, 31, 1284-1292.	2.8	18
131	Meningorectal Fistula as a Cause of Polymicrobial Anaerobic Meningitis. American Journal of Clinical Pathology, 1982, 78, 127-130.	0.4	17
132	Prostaglandin Receptors in the Kidney: A New Route for Intervention?. Nephron Experimental Nephrology, 1998, 6, 180-188.	2.4	16
133	Hypertension and Cyclooxygenase-2 Inhibitors. Hypertension, 2004, 44, 396-397.	1.3	16
134	Increased dietary sodium induces COX2 expression by activating NFήB in renal medullary interstitial cells. Pflugers Archiv European Journal of Physiology, 2014, 466, 357-367.	1.3	16
135	Estimated glomerular filtration rate progression in UK primary care patients with type 2 diabetes and diabetic kidney disease: a retrospective cohort study. International Journal of Clinical Practice, 2015, 69, 871-882.	0.8	16
136	Increased severity of renal impairment in nephritic mice lacking the EP1 receptor. Canadian Journal of Physiology and Pharmacology, 2006, 84, 877-885.	0.7	15
137	Novel avenues for drug discovery in diabetic kidney disease. Expert Opinion on Drug Discovery, 2018, 13, 65-74.	2.5	15
138	Cardiovascular effects of selective COX-2 inhibition: is there a class effect? The International COX-2 Study Group. Journal of Rheumatology, 2006, 33, 1403-8.	1.0	14
139	Renal Physiology Seminars / Mechanisms and Regulation of Renal / H ⁺ and HCO ⁻ ₃ Transport. American Journal of Nephrology, 1987, 7, 150-161.	1.4	13
140	Expression of Mediators of Renal Injury in the Remnant Kidney of ROP Mice Is Attenuated by Cyclooxygenase-2 Inhibition. Nephron Experimental Nephrology, 2005, 101, e75-e85.	2.4	13
141	Diabetic Nephropathy: A National Dialogue. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1603-1605.	2.2	13
142	Bradykinin B2 type receptor activation regulates fluid and electrolyte transport in the rabbit kidney. Peptides, 2005, 26, 1308-1316.	1.2	12
143	Generation and Activity of a Humanized Monoclonal Antibody That Selectively Neutralizes the Epidermal Growth Factor Receptor Ligands Transforming Growth Factor- <i>α</i> and Epiregulin. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 330-343.	1.3	12
144	Effect of deletion of the prostaglandin EP4 receptor on stimulation of calcium release from cultured mouse calvariae: Impaired responsiveness in heterozygotes. Prostaglandins and Other Lipid Mediators, 2005, 78, 19-26.	1.0	11

#	Article	IF	CITATIONS
145	Viral transduction of renin rapidly establishes persistent hypertension in diverse murine strains. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R467-R474.	0.9	11
146	Targeted gene disruption of the prostaglandin e2 ep2 receptor. Advances in Experimental Medicine and Biology, 2002, 507, 321-326.	0.8	11
147	Diabetic nephropathy: leveraging mouse genetics. Current Opinion in Nephrology and Hypertension, 2006, 15, 227-232.	1.0	10
148	Drug Discovery for Diabetic Nephropathy: Trying the Leap From Mouse to Man. Seminars in Nephrology, 2012, 32, 445-451.	0.6	10
149	Improving productivity of modern-day drug discovery. Expert Opinion on Drug Discovery, 2014, 9, 115-118.	2.5	10
150	Research Priorities for Kidney-Related Research—An Agenda to Advance Kidney Care: A Position Statement From the National Kidney Foundation. American Journal of Kidney Diseases, 2022, 79, 141-152.	2.1	10
151	Characterization of diabetic nephropathy in a transgenic model of hypoinsulinemic diabetes. American Journal of Physiology - Renal Physiology, 2006, 291, F1315-F1322.	1.3	9
152	Stacking the Deck for Drug Discovery in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 1623-1624.	3.0	9
153	Generation of a conditional allele for the mouse endothelial nitric oxide synthase gene. Genesis, 2012, 50, 685-692.	0.8	9
154	From bench to patient: model systems in drug discovery. DMM Disease Models and Mechanisms, 2015, 8, 1171-1174.	1.2	9
155	Nonselective Cyclooxygenase Inhibition Retards Cyst Progression in a Murine Model of Autosomal Dominant Polycystic Kidney Disease. International Journal of Medical Sciences, 2019, 16, 180-188.	1.1	9
156	Induction of rabbit cyclooxygenase 2 in the anterior uvea following glaucoma filtration surgery. Current Eye Research, 1997, 16, 1147-1151.	0.7	8
157	Inflammatory Modulation and Wound Repair. Journal of Investigative Dermatology, 2003, 120, xi-xii.	0.3	8
158	Cyclooxygenase-2 contributes to diabetic nephropathy through glomerular EP4 receptor. Prostaglandins and Other Lipid Mediators, 2022, 159, 106621.	1.0	7
159	Examining diabetic nephropathy through the lens of mouse genetics. Current Diabetes Reports, 2007, 7, 459-466.	1.7	6
160	Osteopontin in diabetic nephropathy: signpost or road?. Kidney International, 2010, 77, 565-566.	2.6	6
161	Pathological and Transcriptome Changes in the ReninAAV <i>db</i> / <i>db</i> uNx Model of Advanced Diabetic Kidney Disease Exhibit Features of Human Disease. Toxicologic Pathology, 2018, 46, 991-998.	0.9	6
162	Getting to the heart of COX-2 inhibition. Cell Metabolism, 2005, 2, 149-150.	7.2	5

#	Article	IF	CITATIONS
163	Insight into the genetics of diabetic nephropathy through the study of mice. Current Opinion in Nephrology and Hypertension, 2008, 17, 82-86.	1.0	5
164	The Use of Genomics to Drive Kidney Disease Drug Discovery and Development. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1342-1351.	2.2	5
165	Intrarenal distribution of rabbit PKC zeta. Kidney International, 1997, 51, 1831-1837.	2.6	4
166	Beyond cyclooxygenase. Kidney International, 2002, 62, 1898-1899.	2.6	4
167	Genetics of Diabetic Nephropathy: Lessons From Mice. Seminars in Nephrology, 2007, 27, 237-247.	0.6	4
168	Diabetic Nephropathy: Introduction. Seminars in Nephrology, 2007, 27, 129.	0.6	4
169	Prostanoid receptors and the urogenital tract. Current Opinion in Investigational Drugs, 2003, 4, 1343-53.	2.3	4
170	Diabetic nephropathy: Big and bad. Kidney International, 2005, 68, 1896-1897.	2.6	3
171	Translating Experimental Diabetic Nephropathy Studies from Mice to Men. Contributions To Nephrology, 2011, 170, 156-164.	1.1	3
172	Characterization of the Proton-Secreting Cell of the Rabbit Medullary Collecting Duct. Annals of the New York Academy of Sciences, 1989, 574, 428-437.	1.8	2
173	Progress in Progression?. Journal of the American Society of Nephrology: JASN, 2010, 21, 1414-1416.	3.0	2
174	Eicosanoids and Renal Function. , 2013, , 487-509.		1
175	Targeted gene disruption of the prostaglandin E2 EP2 receptor. Prostaglandins and Other Lipid Mediators, 1999, 59, 86.	1.0	0
176	Renal Medullary Interstitial Cells. AIP Conference Proceedings, 2007, , .	0.3	0
177	Eicosanoid Receptors. , 2004, , 6-9.		0
178	Glycogen Synthase Kinase 3 Inhibition Improves Insulin Stimulated Glucose Metabolismin High Fat Fed C57/BL6J Mice. FASEB Journal, 2007, 21, A832.	0.2	0
179	Structure and Localization of the Rabbit Prostaglandin EP3 Receptor. Advances in Experimental Medicine and Biology, 1997, 400A, 261-268.	0.8	0