
## Jarmila Pittermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081391/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF        | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 1  | Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns.<br>New Phytologist, 2021, 229, 607-619.                                                                                                             | 7.3       | 16            |
| 2  | Leaf water relations in epiphytic ferns are driven by drought avoidance rather than tolerance mechanisms. Plant, Cell and Environment, 2021, 44, 1741-1755.                                                                                             | 5.7       | 15            |
| 3  | Primary tissues may affect estimates of cavitation resistance in ferns. New Phytologist, 2021, 231, 285-296.                                                                                                                                            | 7.3       | 8             |
| 4  | Positive root pressure is critical for whole-plant desiccation recovery in two species of terrestrial resurrection ferns. Journal of Experimental Botany, 2020, 71, 1139-1150.                                                                          | 4.8       | 18            |
| 5  | Xylem form and function under extreme nutrient limitation: an example from California's pygmy forest. New Phytologist, 2020, 226, 760-769.                                                                                                              | 7.3       | 9             |
| 6  | Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable<br>light. Annals of Botany, 2020, 125, 691-700.                                                                                                         | 2.9       | 11            |
| 7  | Two coastal Pacific evergreens, Arbutus menziesii, Pursh. and Quercus agrifolia, Née show little<br>water stress during California's exceptional drought. PLoS ONE, 2020, 15, e0230868.                                                                 | 2.5       | 6             |
| 8  | Cheap and attractive: water relations and floral adaptation. New Phytologist, 2019, 223, 8-10.                                                                                                                                                          | 7.3       | 8             |
| 9  | Highâ€resolution computed tomography reveals dynamics of desiccation and rehydration in fern<br>petioles of a desiccationâ€tolerant fern. New Phytologist, 2019, 224, 97-105.                                                                           | 7.3       | 19            |
| 10 | Small trees, big problems: Comparative leaf function under extreme edaphic stress. American Journal<br>of Botany, 2018, 105, 50-59.                                                                                                                     | 1.7       | 9             |
| 11 | Geometry, Allometry and Biomechanics of Fern Leaf Petioles: Their Significance for the Evolution of<br>Functional and Ecological Diversity Within the Pteridaceae. Frontiers in Plant Science, 2018, 9, 197.                                            | 3.6       | 18            |
| 12 | Transport efficiency and cavitation resistance in developing shoots: a risk worth taking. Tree<br>Physiology, 2018, 38, 1085-1087.                                                                                                                      | 3.1       | 5             |
| 13 | Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy<br>radiation interception and use in two forage species of <i>Centrosema</i> ( <scp>DC</scp> .) Benth<br>Grass and Forage Science, 2018, 73, 967-978. | 2.9       | 32            |
| 14 | The water relations and xylem attributes of albino redwood shoots (Sequioa sempervirens (D. Don.)) Tj ETQq0 0                                                                                                                                           | 0 rgBT /0 | verlock 10 Tf |
| 15 | Embolism spread in the primary xylem of <i>Polystichum munitum</i> : implications for water transport during seasonal drought. Plant, Cell and Environment, 2016, 39, 338-346.                                                                          | 5.7       | 9             |
| 16 | Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional<br>drought. New Phytologist, 2016, 210, 122-132.                                                                                                      | 7.3       | 18            |

| 17 | Evergreen and Deciduous Ferns of the Coast Redwood Forest. Madro $	ilde{A}$ ±0, 2016, 63, 329-339. |  |      |  |         |   | 0.4     | 6 |  |  |
|----|----------------------------------------------------------------------------------------------------|--|------|--|---------|---|---------|---|--|--|
|    |                                                                                                    |  | с. I |  | .0. 1 1 | I | .1 1.11 | 1 |  |  |

18Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody<br/>plant species. New Phytologist, 2016, 209, 123-136.7.3466

JARMILA PITTERMANN

| #  | Article                                                                                                                                                                                                                              | IF        | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 19 | Seasonal changes in tissueâ€water relations for eight species of ferns during historic drought in<br>California. American Journal of Botany, 2016, 103, 1607-1617.                                                                   | 1.7       | 17             |
| 20 | Convergent evolution of vascular optimization in kelp (Laminariales). Proceedings of the Royal<br>Society B: Biological Sciences, 2015, 282, 20151667.                                                                               | 2.6       | 19             |
| 21 | The Hydraulic Architecture of Conifers. , 2015, , 39-75.                                                                                                                                                                             |           | 29             |
| 22 | The Structure and Function of Xylem in Seed-Free Vascular Plants: An Evolutionary Perspective. , 2015, , 1-37.                                                                                                                       |           | 20             |
| 23 | Pteris ×caridadiae (Pteridaceae), a new hybrid fern from Costa Rica. Brittonia, 2015, 67, 138-143.                                                                                                                                   | 0.2       | 6              |
| 24 | Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit<br>Membranes  Â. Plant Physiology, 2014, 165, 895-904.                                                                             | 4.8       | 53             |
| 25 | Heavy browsing affects the hydraulic capacity of Ceanothus rigidus (Rhamnaceae). Oecologia, 2014,<br>175, 801-810.                                                                                                                   | 2.0       | 11             |
| 26 | The effect of subambient to elevated atmospheric <scp>CO</scp> <sub>2</sub> concentration on vascular function in <i>Helianthus annuus</i> : implications for plant response to climate change. New Phytologist, 2013, 199, 956-965. | 7.3       | 28             |
| 27 | The physiological resilience of fern sporophytes and gametophytes: advances in water relations offer new insights into an old lineage. Frontiers in Plant Science, 2013, 4, 285.                                                     | 3.6       | 79             |
| 28 | Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.                                                                                                                                           | 27.8      | 1,944          |
| 29 | Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9647-9652.                                | 7.1       | 125            |
| 30 | The physiological implications of primary xylem organization in two ferns. Plant, Cell and Environment, 2012, 35, 1898-1911.                                                                                                         | 5.7       | 42             |
| 31 | Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist, 2011, 192, 449-461.                                                                                                     | 7.3       | 97             |
| 32 | The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of<br>Pit Membrane Form and Function  Â. Plant Physiology, 2010, 153, 1919-1931.                                                  | 4.8       | 123            |
| 33 | New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytologist, 2009, 182, 557-560.                                                                                                 | 7.3       | 49             |
| 34 | Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D.) Tj ETQq0 0 0                                                                                                                      | rgBT/Over | rloçk 10 Tf 50 |
| 35 | Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant,<br>Cell and Environment, 2006, 29, 1618-1628.                                                                                    | 5.7       | 218            |

Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 2006, 93, 1490-1500. 1.7 524

JARMILA PITTERMANN

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Analysis of Freeze-Thaw Embolism in Conifers. The Interaction between Cavitation Pressure and<br>Tracheid Size. Plant Physiology, 2006, 140, 374-382.                            | 4.8  | 162       |
| 38 | Interâ€tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 2006, 93, 1265-1273. | 1.7  | 162       |
| 39 | Torus-Margo Pits Help Conifers Compete with Angiosperms. Science, 2005, 310, 1924-1924.                                                                                          | 12.6 | 165       |
| 40 | Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.<br>Tree Physiology, 2003, 23, 907-914.                                       | 3.1  | 220       |
| 41 | Cavitation Fatigue. Embolism and Refilling Cycles Can Weaken the Cavitation Resistance of Xylem.<br>Plant Physiology, 2001, 125, 779-786.                                        | 4.8  | 293       |
| 42 | Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 2000, 1, 31-41.                                                | 2.7  | 276       |