Jarmila Pittermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	27.8	1,944
2	Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 2006, 93, 1490-1500.	1.7	524
3	Weak tradeoff between xylem safety and xylemâ€ s pecific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	7.3	466
4	Cavitation Fatigue. Embolism and Refilling Cycles Can Weaken the Cavitation Resistance of Xylem. Plant Physiology, 2001, 125, 779-786.	4.8	293
5	Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 2000, 1, 31-41.	2.7	276
6	Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 2003, 23, 907-914.	3.1	220
7	Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell and Environment, 2006, 29, 1618-1628.	5.7	218
8	Torus-Margo Pits Help Conifers Compete with Angiosperms. Science, 2005, 310, 1924-1924.	12.6	165
9	Analysis of Freeze-Thaw Embolism in Conifers. The Interaction between Cavitation Pressure and Tracheid Size. Plant Physiology, 2006, 140, 374-382.	4.8	162
10	Interâ€ŧracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 2006, 93, 1265-1273.	1.7	162
11	Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9647-9652.	7.1	125
12	The Relationships between Xylem Safety and Hydraulic Efficiency in the Cupressaceae: The Evolution of Pit Membrane Form and Function Â. Plant Physiology, 2010, 153, 1919-1931.	4.8	123
13	Structure-function constraints of tracheid-based xylem: a comparison of conifers and ferns. New Phytologist, 2011, 192, 449-461.	7.3	97
14	Hydraulic efficiency and safety of branch xylem increases with height in Sequoia sempervirens (D.) Tj ETQq0 0 0 i	gBT/Over	lock 10 Tf 50
15	The physiological resilience of fern sporophytes and gametophytes: advances in water relations offer new insights into an old lineage. Frontiers in Plant Science, 2013, 4, 285.	3.6	79

16	Cavitation Resistance in Seedless Vascular Plants: The Structure and Function of Interconduit Pit Membranes Â. Plant Physiology, 2014, 165, 895-904.	4.8	53
17	New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytologist, 2009, 182, 557-560.	7.3	49

¹⁸The physiological implications of primary xylem organization in two ferns. Plant, Cell and
Environment, 2012, 35, 1898-1911.5.742

#	Article	IF	CITATIONS
19	Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of <i>Centrosema</i> (<scp>DC</scp> .) Benth Grass and Forage Science, 2018, 73, 967-978.	2.9	32
20	The Hydraulic Architecture of Conifers. , 2015, , 39-75.		29
21	The effect of subambient to elevated atmospheric <scp>CO</scp> ₂ concentration on vascular function in <i>Helianthus annuus</i> : implications for plant response to climate change. New Phytologist, 2013, 199, 956-965.	7.3	28
22	The Structure and Function of Xylem in Seed-Free Vascular Plants: An Evolutionary Perspective. , 2015, , 1-37.		20
23	Convergent evolution of vascular optimization in kelp (Laminariales). Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151667.	2.6	19
24	Highâ€resolution computed tomography reveals dynamics of desiccation and rehydration in fern petioles of a desiccationâ€tolerant fern. New Phytologist, 2019, 224, 97-105.	7.3	19
25	Not dead yet: the seasonal water relations of two perennial ferns during California's exceptional drought. New Phytologist, 2016, 210, 122-132.	7.3	18
26	Geometry, Allometry and Biomechanics of Fern Leaf Petioles: Their Significance for the Evolution of Functional and Ecological Diversity Within the Pteridaceae. Frontiers in Plant Science, 2018, 9, 197.	3.6	18
27	Positive root pressure is critical for whole-plant desiccation recovery in two species of terrestrial resurrection ferns. Journal of Experimental Botany, 2020, 71, 1139-1150.	4.8	18
28	Seasonal changes in tissueâ€water relations for eight species of ferns during historic drought in California. American Journal of Botany, 2016, 103, 1607-1617.	1.7	17
29	Insights into the evolutionary history and widespread occurrence of antheridiogen systems in ferns. New Phytologist, 2021, 229, 607-619.	7.3	16
30	Leaf water relations in epiphytic ferns are driven by drought avoidance rather than tolerance mechanisms. Plant, Cell and Environment, 2021, 44, 1741-1755.	5.7	15
31	Heavy browsing affects the hydraulic capacity of Ceanothus rigidus (Rhamnaceae). Oecologia, 2014, 175, 801-810.	2.0	11
32	Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Annals of Botany, 2020, 125, 691-700.	2.9	11
33	Embolism spread in the primary xylem of <i>Polystichum munitum</i> : implications for water transport during seasonal drought. Plant, Cell and Environment, 2016, 39, 338-346.	5.7	9
34	Small trees, big problems: Comparative leaf function under extreme edaphic stress. American Journal of Botany, 2018, 105, 50-59.	1.7	9
35	Xylem form and function under extreme nutrient limitation: an example from California's pygmy forest. New Phytologist, 2020, 226, 760-769.	7.3	9
36	Cheap and attractive: water relations and floral adaptation. New Phytologist, 2019, 223, 8-10.	7.3	8

#	Article	IF	CITATIONS
37	Primary tissues may affect estimates of cavitation resistance in ferns. New Phytologist, 2021, 231, 285-296.	7.3	8
38	Pteris ×caridadiae (Pteridaceae), a new hybrid fern from Costa Rica. Brittonia, 2015, 67, 138-143.	0.2	6
39	Evergreen and Deciduous Ferns of the Coast Redwood Forest. Madro $ ilde{A}\pm$ o, 2016, 63, 329-339.	0.4	6
40	Two coastal Pacific evergreens, Arbutus menziesii, Pursh. and Quercus agrifolia, Née show little water stress during California's exceptional drought. PLoS ONE, 2020, 15, e0230868.	2.5	6
41	The water relations and xylem attributes of albino redwood shoots (Sequioa sempervirens (D. Don.)) Tj ETQq1 1	0.784314 2.5	rgBT /Overio
42	Transport efficiency and cavitation resistance in developing shoots: a risk worth taking. Tree Physiology, 2018, 38, 1085-1087.	3.1	5