
Tun-Cheng Chien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic analysis of carbon–carbon bond formation by deoxypodophyllotoxin synthase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
2	Deciphering Pyrrolidine and Olefin Formation Mechanism in Kainic Acid Biosynthesis. ACS Catalysis, 2021, 11, 278-282.	5.5	17
3	Total synthesis of pseudouridine <i>via</i> Heck-type <i>C</i> -glycosylation. New Journal of Chemistry, 2019, 43, 8796-8803.	1.4	9
4	Reaction Mechanism of a Nonheme Iron Enzyme Catalyzed Oxidative Cyclization via C–C Bond Formation. Organic Letters, 2019, 21, 228-232.	2.4	36
5	A selective glucose sensor: the cooperative effect of monoboronic acid-modified poly(amidoamine) dendrimers. Chemical Communications, 2018, 54, 4577-4580.	2.2	12
6	Regioselective synthesis and biological evaluation of <i>N</i> -substituted 2-aminoquinazolin-4-ones. Organic and Biomolecular Chemistry, 2018, 16, 4482-4494.	1.5	13
7	Investigation of <i>O</i> ‣ulfonylationâ€promoted Heterolytic NO Bond Cleavage of Amidoximes and Ketoximes. Journal of the Chinese Chemical Society, 2018, 65, 325-330.	0.8	1
8	Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Research, 2017, 45, 10861-10871.	6.5	68
9	Green fluorescent protein chromophore derivative suppresses ultraviolet Aâ€induced <scp>JNK</scp> â€signalling and apoptosis in keratinocytes and adverse effects in zebrafish embryos. Experimental Dermatology, 2016, 25, 983-990.	1.4	4
10	Identification of Reactive Intermediates for the Decarbonylative Reaction of 1-Alkylprolines. Synlett, 2016, 27, 2841-2845.	1.0	4
11	Cul-Catalyzed intramolecular aminocyanation of terminal alkynes in N-(2-ethynylphenyl)-N-sulfonylcyanamides via Cu–vinylidene intermediates. Chemical Communications, 2016, 52, 14404-14407.	2.2	18
12	Biomimetic Approach toward the Total Synthesis of <i>rac</i> -2-(Acylmethylene)pyrrolidine Alkaloids. Journal of Organic Chemistry, 2015, 80, 6669-6678.	1.7	11
13	One-Pot Synthesis of N-Monosubstituted Ureas from Nitriles via Tiemann Rearrangement. Synlett, 2015, 26, 1823-1826.	1.0	12
14	Practical Synthesis of <i>N</i> -Substituted Cyanamides via Tiemann Rearrangement of Amidoximes. Organic Letters, 2014, 16, 892-895.	2.4	57
15	Copper(I) Iodide-Catalyzed Synthesis of N,N′-Disubstituted Guanidines from N-Substituted Cyanamides. Australian Journal of Chemistry, 2014, 67, 1134.	0.5	10
16	Synthesis of 6-substituted uracil and uridine derivatives. , 2014, , .		0
17	Synthesis and Unexpected Oxidization of the Tricyclic Core of Ugibohlin, Isophakellin, and Styloguanidine. Journal of Organic Chemistry, 2013, 78, 10459-10468.	1.7	8
18	Regioselective arylation of uracil and 4-pyridone derivatives via copper(I) bromide mediated C–H bond activation. Tetrahedron, 2013, 69, 1387-1396.	1.0	21

TUN-CHENG CHIEN

#	Article	IF	CITATIONS
19	Synthesis of 6-Alkyluridines from 6-Cyanouridine via Zinc(II) Chloride-Catalyzed Nucleophilic Substitution with Alkyl Grignard Reagents. Journal of Organic Chemistry, 2013, 78, 4027-4036.	1.7	7
20	Analysis of UDP- <scp>d</scp> -Apiose/UDP- <scp>d</scp> -Xylose Synthase-Catalyzed Conversion of UDP- <scp>d</scp> -Apiose Phosphonate to UDP- <scp>d</scp> -Xylose Phosphonate: Implications for a Retroaldol–Aldol Mechanism. Journal of the American Chemical Society, 2012, 134, 13946-13949.	6.6	30
21	Facile synthesis of 4-arylidene-5-imidazolinones as synthetic analogs of fluorescent protein chromophore. Tetrahedron, 2012, 68, 5898-5907.	1.0	39
22	Practical synthesis of 6-aryluridines via palladium(II) acetate catalyzed Suzuki–Miyaura cross-coupling reaction. Tetrahedron, 2011, 67, 3915-3923.	1.0	23
23	Study on the synthesis of 6-alkylaminouridines via the nucleophilic aromatic substitution reaction of 6-cyanouridine derivatives. Tetrahedron Letters, 2011, 52, 3969-3972.	0.7	2
24	Reinvestigation of the Synthesis of 1-Deazauridine. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 523-534.	0.4	0
25	Chemical models and their mechanistic implications for the transformation of 6-cyanouridine 5′-monophosphate catalyzed by orotidine 5′-monophosphate decarboxylase. Chemical Communications, 2010, 46, 4821.	2.2	3
26	Chemical Models and Their Mechanistic Implications for the Transformation of 6-Cyanouridine 5'-Monophosphate Catalyzed by Orotidine 5'-Monophosphate Decarboxylase. Nucleic Acids Symposium Series, 2008, 52, 297-298.	0.3	1
27	Design and Synthesis of 1-(Â-D-Ribofuranosyl)imidazo[4,5-c]pyrazoles as 5:5 Bicyclic Analogs of Purine Nucleosides. Nucleic Acids Symposium Series, 2008, 52, 593-594.	0.3	1
28	Nucleosides XIII. Facile Synthesis of 4-Amino-1-(2-deoxy-β-D-ribofuranosyl)quinazolin-2-one as a 2′-Deoxycytidine Analog for Oligonucleotide Synthesis. Journal of the Chinese Chemical Society, 2005, 52, 1237-1244.	0.8	9
29	Synthesis of 3-Aminoimidazo[4,5-c]pyrazole Nucleoside via the N-N Bond Formation Strategy as a [5:5] Fused Analog of Adenosine. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1971-1996.	0.4	3
30	Nucleosides. IX. Synthesis of Purine N 3,5′â€Cyclonucleosides and N 3,5′â€Cycloâ€2′,3′â€seconucleo Mitsunobu Reaction as TIBOâ€like Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 347-359.	sides via 0.4	15
31	Mononuclear Heterocyclic Rearrangement: Synthesis of [5:5] Bicyclic [c]-Fused 3- Aminopyrazoles via the N-N Bond Formation Strategy. Heterocycles, 2004, 63, 2475.	0.4	15
32	Facile Synthesis of 1-Substituted 4,5-Diaminopyrazoles and Its Application Toward the Synthesis of Pyrazolo[3,4-b]pyrazines ChemInform, 2004, 35, no.	0.1	0
33	Facile Synthesis of 1-Substituted 2-Amino-3-cyanopyrroles: New Synthetic Precursors for 5,6-Unsubstituted Pyrrolo[2,3-d]pyrimidines ChemInform, 2004, 35, no.	0.1	0
34	Facile synthesis of 1-substituted 4,5-diaminopyrazoles and its application toward the synthesis of pyrazolo[3,4- b]pyrazines. Tetrahedron Letters, 2004, 45, 4105-4108.	0.7	9
35	A convenient preparation of 1,2,3-tri-O-acetyl-β-d-ribofuranose by enzymatic regioselective 5-O-deacetylation of the peracetylated ribofuranose. Carbohydrate Research, 2004, 339, 1215-1217.	1.1	17
36	Facile Synthesis of 1-Substituted 2-Amino-3-cyanopyrroles:  New Synthetic Precursors for 5,6-Unsubstituted Pyrrolo[2,3-d]pyrimidines. Organic Letters, 2004, 6, 2857-2859.	2.4	41

#	Article	IF	CITATIONS
37	Synthesis and Antiviral Evaluation of Polyhalogenated Imidazole Nucleosides:Â Dimensional Analogues of 2,5,6-Trichloro-1-(β-d-ribofuranosyl)benzimidazole. Journal of Medicinal Chemistry, 2004, 47, 5743-5752.	2.9	41
38	Nucleosides XII. ¹ Synthesis of 5â€Modified Isoguanosines and Reinvestigation of 5â€2â€Deoxyâ€ <i>N³</i> ,5â€2â€cycloisoguanosine. Journal of the Chinese Chemical Society, 2004, 1401-1406.	501,8	5
39	Nucleosides: XI. Synthesis and Antiviral Evaluation of 5'-Alkylthio-5'-deoxy Quinazolinone Nucleoside Derivatives as S-Adenosyl-L-homocysteine Analogs. Chemical and Pharmaceutical Bulletin, 2004, 52, 1422-1426.	0.6	88
40	Nucleosides VII:1 Synthesis of N-triphenylphosphoranylidene nucleosides by mitsunobu reaction. A novel protecting group for primary amines of nucleosides. Tetrahedron Letters, 1995, 36, 7881-7884.	0.7	8