Ander Izeta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8081165/publications.pdf

Version: 2024-02-01

89 papers 2,824 citations

30 h-index 50 g-index

94 all docs 94 docs citations

94 times ranked 3496 citing authors

#	Article	IF	CITATIONS
1	Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Technologies to Dermatology. Life, 2022, 12, 67.	1.1	4
2	Human Hair Follicle-Derived Mesenchymal Stromal Cells from the Lower Dermal Sheath as a Competitive Alternative for Immunomodulation. Biomedicines, 2022, 10, 253.	1.4	7
3	Identification of Hypoxia-Ischemia by Chemometrics Considering Systemic Changes of Physiology. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2814-2821.	3.9	2
4	Triku: a feature selection method based on nearest neighbors for single-cell data. GigaScience, 2022, 11, .	3.3	13
5	Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. , 2021, 12, 494.		21
6	Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Engineering and Regenerative Medicine, 2021, 18, 343-353.	1.6	15
7	Human Dermal Fibroblast Subpopulations Are Conserved across Single-Cell RNA Sequencing Studies. Journal of Investigative Dermatology, 2021, 141, 1735-1744.e35.	0.3	67
8	The need to reassess single-cell RNA sequencing datasets: more is not always better. F1000Research, 2021, 10, 767.	0.8	6
9	Cell therapy as a treatment of secondary lymphedema: a systematic review and meta-analysis. Stem Cell Research and Therapy, 2021, 12, 578.	2.4	3
10	Spanish Society of Gene and Cell Therapy. Human Gene Therapy, 2021, 32, 1425-1426.	1.4	0
11	Physicochemical and Biological Performance of Aloe Vera-Incorporated Native Collagen Films. Pharmaceutics, 2020, 12, 1173.	2.0	26
12	A Green Approach towards Native Collagen Scaffolds: Environmental and Physicochemical Assessment. Polymers, 2020, 12, 1597.	2.0	13
13	Machine Learning-Assisted Raman Spectroscopy for pH and Lactate Sensing in Body Fluids. Analytical Chemistry, 2020, 92, 13888-13895.	3.2	20
14	HuR/ELAVL1 drives malignant peripheral nerve sheath tumor growth and metastasis. Journal of Clinical Investigation, 2020, 130, 3848-3864.	3.9	38
15	Role of bulge epidermal stem cells and <scp>TSLP</scp> signaling in psoriasis. EMBO Molecular Medicine, 2019, 11, e10697.	3.3	17
16	<p>Creation of a multidisciplinary and multicenter study group for the use of 3D printing in general thoracic surgery: lessons learned in our first year experience</p> . Medical Devices: Evidence and Research, 2019, Volume 12, 143-149.	0.4	11
17	Pericytes in Cutaneous Wound Healing. Advances in Experimental Medicine and Biology, 2019, 1147, 1-63.	0.8	11
18	Isolation and characterization of myogenic precursor cells from human cremaster muscle. Scientific Reports, 2019, 9, 3454.	1.6	10

#	Article	IF	Citations
19	The panniculus carnosus muscle: A novel model of striated muscle regeneration that exhibits sex differences in the mdx mouse. Scientific Reports, 2019, 9, 15964.	1.6	12
20	Distinct Patterns of Hair Graft Survival After Transplantation Into 2 Nonhealing Ulcers: Is Location Everything?. Dermatologic Surgery, 2019, 45, 557-565.	0.4	11
21	SOX2 expression diminishes with ageing in several tissues in mice and humans. Mechanisms of Ageing and Development, 2019, 177, 30-36.	2.2	25
22	Lichen Planopilaris and Frontal Fibrosing Alopecia as Model Epithelial Stem Cell Diseases. Trends in Molecular Medicine, 2018, 24, 435-448.	3.5	89
23	Comment on â€~Adult skin-derived precursor Schwann cell grafts form growths in the injured spinal cord of Fischer rats'. Biomedical Materials (Bristol), 2018, 13, 048001.	1.7	0
24	Diversity of Adult Stem Cell Niches in the Dermal Compartment of Skin., 2018,,.		2
25	Effect of bone marrow stromal cells in combination with biomaterials in early phases of distraction osteogenesis: An experimental study in a rabbit femur model. Injury, 2018, 49, 1979-1986.	0.7	10
26	The <i>panniculus carnosus</i> muscle: an evolutionary enigma at the intersection of distinct research fields. Journal of Anatomy, 2018, 233, 275-288.	0.9	71
27	SOX2 haploinsufficiency promotes impaired vision at advanced age. Oncotarget, 2018, 9, 36684-36692.	0.8	2
28	Epigenetic age-predictor for mice based on three CpG sites. ELife, 2018, 7, .	2.8	54
29	Schwann Cells in the Ventral Dermis Do Not Derive from Myf5-Expressing Precursors. Stem Cell Reports, 2017, 9, 1477-1487.	2.3	8
30	NaviSE: superenhancer navigator integrating epigenomics signal algebra. BMC Bioinformatics, 2017, 18, 296.	1.2	5
31	Systematic Review to Compare Urothelium Differentiation with Urethral Epithelium Differentiation in Fetal Development, as a Basis for Tissue Engineering of the Male Urethra. Tissue Engineering - Part B: Reviews, 2017, 23, 257-267.	2.5	11
32	Shh… Sweat gland in progress!. Experimental Dermatology, 2017, 26, 548-549.	1.4	1
33	An immunohistochemical study of cytokeratins distribution of the human adult male and female urethra. Histology and Histopathology, 2017, 32, 283-291.	0.5	4
34	Editorial: Role of Stem Cells in Skeletal Muscle Development, Regeneration, Repair, Aging, and Disease. Frontiers in Aging Neuroscience, 2016, 8, 95.	1.7	3
35	Does <scp>S</scp> chwann cell dedifferentiation originate dermal neurofibromas?. Experimental Dermatology, 2016, 25, 901-903.	1.4	5
36	Biology of the eyelash hair follicle: an enigma in plain sight. British Journal of Dermatology, 2016, 174, 741-752.	1.4	34

#	Article	IF	CITATIONS
37	Cell-based product classification procedure: What can be done differently to improve decisions on borderline products?. Cytotherapy, 2016, 18, 809-815.	0.3	12
38	Hair follicle–containing punch grafts accelerate chronic ulcer healing: A randomized controlled trial. Journal of the American Academy of Dermatology, 2016, 75, 1007-1014.	0.6	65
39	Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells. Stem Cell Reports, 2016, 7, 411-424.	2.3	30
40	European Regulatory Framework for the Development of Cell-Based Medicines., 2016,, 15-47.		0
41	Circumferential urinary sphincter surface electromyography: A novel diagnostic method for intrinsic sphincter deficiency. Neurourology and Urodynamics, 2016, 35, 186-191.	0.8	5
42	Does fat get you skinny?. Experimental Dermatology, 2015, 24, 740-741.	1.4	1
43	Pericytes in wound healing: friend or foe?. Experimental Dermatology, 2015, 24, 833-834.	1.4	18
44	Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter. Advanced Drug Delivery Reviews, 2015, 82-83, 106-116.	6.6	45
45	Cell Therapy for Stress Urinary Incontinence. Tissue Engineering - Part B: Reviews, 2015, 21, 365-376.	2.5	40
46	Reflections on how wound healingâ€promoting effects of the hair follicle can be translated into clinical practice. Experimental Dermatology, 2015, 24, 91-94.	1.4	46
47	Amniotic Membrane Modifies the Genetic Program Induced by TGFß, Stimulating Keratinocyte Proliferation and Migration in Chronic Wounds. PLoS ONE, 2015, 10, e0135324.	1.1	32
48	Neural-Competent Cells of Adult Human Dermis Belong to the Schwann Lineage. Stem Cell Reports, 2014, 3, 774-788.	2.3	39
49	Association between <scp><i>EGFR</i></scp> gene polymorphisms, skin rash and response to antiâ€ <scp>EGFR</scp> therapy in metastatic colorectal cancer patients. Experimental Dermatology, 2014, 23, 751-753.	1.4	19
50	Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. BioEssays, 2014, 36, 513-525.	1.2	111
51	Murine Muscle Engineered from Dermal Precursors: An <i>In Vitro</i> Model for Skeletal Muscle Generation, Degeneration, and Fatty Infiltration. Tissue Engineering - Part C: Methods, 2014, 20, 28-41.	1.1	10
52	The puzzling situation of hospital exemption for advanced therapy medicinal products in Europe and stakeholders' concerns. Cytotherapy, 2014, 16, 1597-1600.	0.3	42
53	Aurophilically cross-linked "dynamic―hydrogels mimicking healthy synovial fluid properties. Chemical Communications, 2014, 50, 15199-15201.	2.2	37
54	G.P.199. Neuromuscular Disorders, 2014, 24, 876.	0.3	0

#	Article	IF	CITATIONS
55	Production of human tissue-engineered skin trilayer on a plasma-based hypodermis. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 479-490.	1.3	56
56	A neural extracellular matrix-based method for in vitrohippocampal neuron culture and dopaminergic differentiation of neural stem cells. BMC Neuroscience, 2013, 14, 48.	0.8	12
57	Skin-Derived Precursor Cells as an In Vitro Modelling Tool for the Study of Type 1 Neurofibromatosis. Stem Cells International, 2012, 2012, 1-9.	1.2	3
58	Lactase persistence, NOD2 status and Mycobacterium avium subsp. paratuberculosis infection associations to Inflammatory Bowel Disease. Gut Pathogens, 2012, 4, 6.	1.6	27
59	A pilot clinical study of hair grafting in chronic leg ulcers. Wound Repair and Regeneration, 2012, 20, 806-814.	1.5	53
60	Strategies for Human Adipose Tissue Repair and Regeneration. Journal of Cosmetics Dermatological Sciences and Applications, 2012, 02, 93-107.	0.1	3
61	Modeling neural differentiation on micropatterned substrates coated with neural matrix components. Frontiers in Cellular Neuroscience, 2012, 6, 10.	1.8	19
62	Morphometric Analysis of the Human Scalp Hair Follicle: Practical Implications for the Hair Transplant Surgeon and Hair Regeneration Studies. Dermatologic Surgery, 2011, 37, 58-64.	0.4	55
63	Functional characterization of highly adherent CD34+ keratinocytes isolated from human skin. Experimental Dermatology, 2010, 19, 685-688.	1.4	20
64	A protocol for enrichment of CD34+ stromal cell fraction through human skin disaggregation and magnetic separation. Journal of Dermatological Science, 2010, 59, 60-62.	1.0	3
65	Clinical Translation of Stem Cell Therapies: A Bridgeable Gap. Cell Stem Cell, 2010, 6, 508-512.	5.2	52
66	Age-Dependent Depletion of Human Skin-Derived Progenitor Cells. Stem Cells, 2009, 27, 1164-1172.	1.4	70
67	Association between Mycobacterium avium subsp. paratuberculosis DNA in blood and cellular and humoral immune response in inflammatory bowel disease patients and controls. International Journal of Infectious Diseases, 2009, 13, 247-254.	1.5	57
68	On the Prevalence of M. avium Subspecies paratuberculosis DNA in the Blood of Healthy Individuals and Patients with Inflammatory Bowel Disease. PLoS ONE, 2008, 3, e2537.	1.1	57
69	The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clinical and Experimental Dermatology, 2006, 31, 807-812.	0.6	82
70	Purification and Characterization of the Caenorhabditis elegans HCF Protein and Domains of Human HCF. Biochemistry, 2005, 44, 10396-10405.	1.2	1
71	Compartmentalization of VP16 in Cells Infected with Recombinant Herpes Simplex Virus Expressing VP16-Green Fluorescent Protein Fusion Proteins. Journal of Virology, 2004, 78, 8002-8014.	1.5	80
72	A C-terminal targeting signal controls differential compartmentalisation of Caenorhabditis elegans host cell factor (HCF) to the nucleus or mitochondria. European Journal of Cell Biology, 2003, 82, 495-504.	1.6	4

#	Article	IF	Citations
73	Primary structure and compartmentalization of Drosophila melanogaster host cell factor. Gene, 2003, 305, 175-183.	1.0	6
74	Transmissible Gastroenteritis Coronavirus Packaging Signal Is Located at the 5′ End of the Virus Genome. Journal of Virology, 2003, 77, 7890-7902.	1.5	68
75	Transcription Regulatory Sequences and mRNA Expression Levels in the Coronavirus Transmissible Gastroenteritis Virus. Journal of Virology, 2002, 76, 1293-1308.	1.5	94
76	In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. Journal of General Virology, 2002, 83, 567-579.	1.3	22
77	Coronavirus derived expression systems. Journal of Biotechnology, 2001, 88, 183-204.	1.9	40
78	Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23, 105-118.	0.7	74
79	Coronavirus Derived Expression Systems. Advances in Experimental Medicine and Biology, 2001, 494, 309-321.	0.8	3
80	A Strategy for the Generation of an Infectious Transmissible Gastroenteritis Coronavirus from Cloned cDNA. Advances in Experimental Medicine and Biology, 2001, 494, 261-266.	0.8	0
81	Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5516-5521.	3.3	320
82	Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus Is a Determinant of Its Enteric Tropism and Virulence. Journal of Virology, 1999, 73, 7607-7618.	1.5	195
83	Interference with Virus and Bacteria Replication by the Tissue Specific Expression of Antibodies and Interfering Molecules. Advances in Experimental Medicine and Biology, 1999, 473, 31-45.	0.8	2
84	Replication and Packaging of Transmissible Gastroenteritis Coronavirus-Derived Synthetic Minigenomes. Journal of Virology, 1999, 73, 1535-1545.	1.5	71
85	Progress Towards the Construction of a Transmissible Gastroenteritis Coronavirus Self-Replicating RNA Using a Two-Layer Expression System. Advances in Experimental Medicine and Biology, 1998, 440, 319-325.	0.8	6
86	The Spike Protein of Transmissible Gastroenteritis Coronavirus Controls the Tropism of Pseudorecombinant Virions Engineered Using Synthetic Minigenomes. Advances in Experimental Medicine and Biology, 1998, 440, 207-214.	0.8	3
87	Molecular Characterization of Transmissible Gastroenteritis Coronavirus Defective Interfering Genomes: Packaging and Heterogeneity. Virology, 1996, 217, 495-507.	1.1	71
88	Structure and Encapsidation of Transmissible Gastroenteritis Coronavirus (TGEV) Defective Interfering Genomes. Advances in Experimental Medicine and Biology, 1995, 380, 583-589.	0.8	2
89	The need to reassess single-cell RNA sequencing datasets: the importance of biological sample processing. F1000Research, 0, 10, 767.	0.8	3