Nasim Annabi

List of Publications by Citations

Source: https://exaly.com/author-pdf/8080862/nasim-annabi-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 116 142 13,570 h-index g-index citations papers 16,253 6.66 11.1 151 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
142	Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. <i>Biomaterials</i> , 2015 , 73, 254-71	15.6	1167
141	25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. <i>Advanced Materials</i> , 2014 , 26, 85-123	24	895
140	Controlling the porosity and microarchitecture of hydrogels for tissue engineering. <i>Tissue Engineering - Part B: Reviews</i> , 2010 , 16, 371-83	7.9	737
139	Carbon-based nanomaterials: multifunctional materials for biomedical engineering. <i>ACS Nano</i> , 2013 , 7, 2891-7	16.7	573
138	Electrospun scaffolds for tissue engineering of vascular grafts. <i>Acta Biomaterialia</i> , 2014 , 10, 11-25	10.8	512
137	Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2016 , 5, 108-18	10.1	407
136	A liver-on-a-chip platform with bioprinted hepatic spheroids. <i>Biofabrication</i> , 2016 , 8, 014101	10.5	353
135	Fiber-based tissue engineering: Progress, challenges, and opportunities. <i>Biotechnology Advances</i> , 2013 , 31, 669-87	17.8	330
134	Microfabricated biomaterials for engineering 3D tissues. <i>Advanced Materials</i> , 2012 , 24, 1782-804	24	310
133	Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. <i>Biomaterials</i> , 2017 , 139, 229-243	15.6	273
132	PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. <i>Biomaterials</i> , 2013 , 34, 6355-66	15.6	236
131	Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700015	10.1	222
130	Vascularized bone tissue engineering: approaches for potential improvement. <i>Tissue Engineering - Part B: Reviews</i> , 2012 , 18, 363-82	7.9	216
129	Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. <i>Biomaterials</i> , 2014 , 35, 7346-54	15.6	209
128	Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. <i>Biomacromolecules</i> , 2013 , 14, 1085-92	6.9	193
127	Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. <i>Biomaterials</i> , 2012 , 33, 9009-18	15.6	191
126	Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 40-9	24	187

(2014-2017)

125	Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. <i>Acta Biomaterialia</i> , 2017 , 49, 66-77	10.8	183	
124	Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. <i>Advanced Functional Materials</i> , 2013 , 23, 4950	15.6	173	
123	Engineering a highly elastic human protein-based sealant for surgical applications. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	170	
122	Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. <i>Small</i> , 2014 , 10, 514-23	11	159	
121	Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. <i>Acta Biomaterialia</i> , 2011 , 7, 1653-64	10.8	156	
120	A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics. <i>Advanced Materials</i> , 2016 , 28, 3280-9	24	156	
119	In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. <i>Biomaterials Science</i> , 2017 , 5, 2093-2105	7.4	152	
118	Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. <i>Biomaterials</i> , 2009 , 30, 4550-7	15.6	149	
117	A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications. <i>Advanced Functional Materials</i> , 2015 , 25, 4814-4826	15.6	148	
116	Engineering porous scaffolds using gas-based techniques. <i>Current Opinion in Biotechnology</i> , 2011 , 22, 661-6	11.4	138	
115	Mussel-Inspired Multifunctional Hydrogel Coating for Prevention of Infections and Enhanced Osteogenesis. <i>ACS Applied Materials & District Materials & Materials &</i>	9.5	132	
114	Elastic sealants for surgical applications. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2015 , 95, 27-39	5.7	132	
113	Surgical Materials: Current Challenges and Nano-enabled Solutions. <i>Nano Today</i> , 2014 , 9, 574-589	17.9	128	
112	A highly adhesive and naturally derived sealant. <i>Biomaterials</i> , 2017 , 140, 115-127	15.6	122	
111	Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. <i>Science Advances</i> , 2019 , 5, eaav1281	14.3	122	
110	The fabrication of elastin-based hydrogels using high pressure CO(2). <i>Biomaterials</i> , 2009 , 30, 1-7	15.6	121	
109	Composite Living Fibers for Creating Tissue Constructs Using Textile Techniques. <i>Advanced Functional Materials</i> , 2014 , 24, 4060-4067	15.6	118	
108	Tri-layered elastomeric scaffolds for engineering heart valve leaflets. <i>Biomaterials</i> , 2014 , 35, 7774-85	15.6	114	

107	A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics. <i>Advanced Functional Materials</i> , 2018 , 28, 1703437	15.6	111
106	Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2146-2153	10.1	109
105	Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 691-705	6.1	107
104	Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA-Laden Nanoparticles Promotes Wound Healing. <i>Small</i> , 2019 , 15, e1902232	11	104
103	Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700289	10.1	101
102	Hydrogels for cardiac tissue engineering. NPG Asia Materials, 2014 , 6, e99-e99	10.3	100
101	Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. <i>Advanced Materials</i> , 2014 , 26, 5823-30	24	100
100	Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. <i>Biomaterials</i> , 2010 , 31, 1655-65	15.6	100
99	Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. <i>Biomaterials</i> , 2017 , 139, 163-171	15.6	96
98	The effect of elastin on chondrocyte adhesion and proliferation on poly (e-caprolactone)/elastin composites. <i>Biomaterials</i> , 2011 , 32, 1517-25	15.6	95
97	Hydrogel-coated microfluidic channels for cardiomyocyte culture. <i>Lab on A Chip</i> , 2013 , 13, 3569-77	7.2	92
96	Oxygen Releasing Biomaterials for Tissue Engineering. <i>Polymer International</i> , 2013 , 62, 843-848	3.3	90
95	Carbon quantum dots: recent progresses on synthesis, surface modification and applications. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 1331-1348	6.1	89
94	Advances and limitations of drug delivery systems formulated as eye drops. <i>Journal of Controlled Release</i> , 2020 , 321, 1-22	11.7	86
93	Engineered cell-laden human protein-based elastomer. <i>Biomaterials</i> , 2013 , 34, 5496-505	15.6	85
92	Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. <i>Acta Biomaterialia</i> , 2012 , 8, 570-8	10.8	85
91	Facile One-step Micropatterning Using Photodegradable Methacrylated Gelatin Hydrogels for Improved Cardiomyocyte Organization and Alignment. <i>Advanced Functional Materials</i> , 2015 , 25, 977-98	6 ^{15.6}	83
90	Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. <i>Advanced Healthcare Materials</i> , 2014 , 3, 929-39	10.1	77

(2017-2016)

89	Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. <i>Advanced Healthcare Materials</i> , 2016 , 5, 175-84	10.1	77	
88	Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. <i>Biotechnology Advances</i> , 2016 , 34, 362-379	17.8	76	
87	Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications. <i>Progress in Polymer Science</i> , 2019 , 92, 135-157	29.6	75	
86	Engineering Biodegradable and Biocompatible Bio-ionic Liquid Conjugated Hydrogels with Tunable Conductivity and Mechanical Properties. <i>Scientific Reports</i> , 2017 , 7, 4345	4.9	70	
85	A cost-effective fluorescence mini-microscope for biomedical applications. <i>Lab on A Chip</i> , 2015 , 15, 366	1 7 92	68	
84	Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug delivery. <i>Scientific Reports</i> , 2017 , 7, 9220	4.9	67	
83	Fabrication of porous PCL/elastin composite scaffolds for tissue engineering applications. <i>Journal of Supercritical Fluids</i> , 2011 , 59, 157-167	4.2	67	
82	Bioprinting of a Cell-Laden Conductive Hydrogel Composite. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 30518-30533	9.5	66	
81	Elastomeric Recombinant Protein-based Biomaterials. <i>Biochemical Engineering Journal</i> , 2013 , 77, 110-1	184.2	66	
80	Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1558-1567	5.5	60	
79	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. <i>Nano Letters</i> , 2017 , 17, 6235-62	. 40 1.5	60	
78	Engineering Adhesive and Antimicrobial Hyaluronic Acid/Elastin-like Polypeptide Hybrid Hydrogels for Tissue Engineering Applications. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2528-2540	5.5	58	
77	Engineering a naturally-derived adhesive and conductive cardiopatch. <i>Biomaterials</i> , 2019 , 207, 89-101	15.6	53	
76	Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. <i>Tissue Engineering - Part A</i> , 2018 , 24, 1393-1405	3.9	51	
75	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. <i>Annals of Biomedical Engineering</i> , 2016 , 44, 1908-20	4.7	51	
74	Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. <i>Biomaterials Science</i> , 2018 , 6, 2938-2950	7·4	51	
73	Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. <i>Advanced Materials</i> , 2021 , 33, e2100176	24	50	
72	Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 217-231	4.9	47	

71	An Antimicrobial Dental Light Curable Bioadhesive Hydrogel for Treatment of Peri-Implant Diseases. <i>Matter</i> , 2019 , 1, 926-944	12.7	43
70	Human-Recombinant-Elastin-Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. <i>Advanced Materials</i> , 2020 , 32, e2003915	24	43
69	Engineering Photocrosslinkable Bicomponent Hydrogel Constructs for Creating 3D Vascularized Bone. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1601122	10.1	42
68	Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. <i>Biomaterials</i> , 2019 , 197, 345-367	15.6	42
67	Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964	5.5	41
66	Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 1314-1330	6.1	38
65	Visible light crosslinkable human hair keratin hydrogels. <i>Bioengineering and Translational Medicine</i> , 2018 , 3, 37-48	14.8	38
64	A microfluidic-based neurotoxin concentration gradient for the generation of an in vitro model of Parkinson u disease. <i>Biomicrofluidics</i> , 2011 , 5, 22214	3.2	38
63	Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. <i>International Journal of Biological Macromolecules</i> , 2021 , 170, 728-750	7.9	37
62	Targeting antigen-presenting cells by anti-PD-1 nanoparticles augments antitumor immunity. <i>JCI Insight</i> , 2018 , 3,	9.9	33
61	Controlled release of drugs from gradient hydrogels for high-throughput analysis of cell-drug interactions. <i>Analytical Chemistry</i> , 2012 , 84, 1302-9	7.8	32
60	Synthesis, characterization and in vitro evaluation of magnetic nanoparticles modified with PCL-PEG-PCL for controlled delivery of 5FU. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 938-945	6.1	31
59	Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. <i>Biomaterials</i> , 2021 , 267, 120476	15.6	30
58	Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. <i>Acta Biomaterialia</i> , 2021 , 124, 191-204	10.8	25
57	Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. <i>Scientific Reports</i> , 2019 , 9, 6535	4.9	24
56	Effect of dense gas CO2 on the coacervation of elastin. <i>Biomacromolecules</i> , 2008 , 9, 1100-5	6.9	24
55	pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging. <i>Drug Development and Industrial Pharmacy</i> , 2018 , 44, 452-462	3.6	24
54	Breathable hydrogel dressings containing natural antioxidants for management of skin disorders. Journal of Biomaterials Applications, 2019, 33, 1265-1276	2.9	23

(2019-2020)

53	Synthesis and characterization of osteoinductive visible light-activated adhesive composites with antimicrobial properties. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2020 , 14, 66-81	4.4	23
52	Adenosine-associated delivery systems. <i>Journal of Drug Targeting</i> , 2015 , 23, 580-96	5.4	22
51	Significant role of cationic polymers in drug delivery systems. <i>Artificial Cells, Nanomedicine and Biotechnology</i> , 2018 , 46, 1872-1891	6.1	22
50	Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. <i>Mikrochimica Acta</i> , 2019 , 187, 25	5.8	21
49	Ciprofloxacin-loaded bioadhesive hydrogels for ocular applications. <i>Biomaterials Science</i> , 2020 , 8, 5196-	572.49	21
48	Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration <i>ACS Applied Bio Materials</i> , 2020 , 3, 3313-3325	4.1	21
47	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. <i>Materials Horizons</i> , 2018 , 5, 813-822	14.4	20
46	Supercritical CO2 sterilization of ultra-high molecular weight polyethylene. <i>Journal of Supercritical Fluids</i> , 2010 , 52, 235-240	4.2	20
45	3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800702	10.1	20
44	Surgical sealants and high strength adhesives. <i>Materials Today</i> , 2015 , 18, 176-177	21.8	19
43	Sterilization of ginseng using a high pressure CO2 at moderate temperatures. <i>Biotechnology and Bioengineering</i> , 2009 , 102, 569-76	4.9	19
42	Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. <i>Critical Reviews in Biotechnology</i> , 2017 , 37, 53-68	9.4	18
41	Laterally Confined Microfluidic Patterning of Cells for Engineering Spatially Defined Vascularization. <i>Small</i> , 2016 , 12, 5132-5139	11	18
40	Nanofibrous Silver-Coated Polymeric Scaffolds with Tunable Electrical Properties. <i>Nanomaterials</i> , 2017 , 7,	5.4	17
39	Natural lecithin promotes neural network complexity and activity. Scientific Reports, 2016, 6, 25777	4.9	17
38	Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600479	5.5	16
37	Synthetic elastin hydrogels that are coblended with heparin display substantial swelling, increased porosity, and improved cell penetration. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 121	5 -21 2	16
36	State-of-the-Art and Trends in Synthesis, Properties, and Application of Quantum Dots-Based Nanomaterials. <i>Particle and Particle Systems Characterization</i> , 2019 , 36, 1800302	3.1	16

35	Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor. <i>Scientific Reports</i> , 2017 , 7, 10997	4.9	15
34	Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. <i>Biomaterials</i> , 2019 , 198, 78-94	15.6	14
33	Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. <i>ACS Nano</i> , 2019 , 13, 12393-12407	16.7	13
32	Lysine-embedded cellulose-based nanosystem for efficient dual-delivery of chemotherapeutics in combination cancer therapy. <i>Carbohydrate Polymers</i> , 2020 , 250, 116861	10.3	13
31	A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. <i>Experimental Eye Research</i> , 2021 , 205, 108472	3.7	12
30	Ectopic high endothelial venules in pancreatic ductal adenocarcinoma: A unique site for targeted delivery. <i>EBioMedicine</i> , 2018 , 38, 79-88	8.8	12
29	Stretchable and Bioadhesive Gelatin Methacryloyl-Based Hydrogels Enabled by Dopamine Polymerization. <i>ACS Applied Materials & </i>	9.5	12
28	Advanced nanodelivery platforms for topical ophthalmic drug delivery. <i>Drug Discovery Today</i> , 2021 , 26, 1437-1449	8.8	10
27	Biomimetic proteoglycan nanoparticles for growth factor immobilization and delivery. <i>Biomaterials Science</i> , 2020 , 8, 1127-1136	7.4	9
26	Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. <i>Nano Today</i> , 2021 , 36,	17.9	9
25	Characterization, mechanistic analysis and improving the properties of denture adhesives. <i>Dental Materials</i> , 2018 , 34, 120-131	5.7	8
24	Gelatin Methacryloyl Bioadhesive Improves Survival and Reduces Scar Burden in a Mouse Model of Myocardial Infarction. <i>Journal of the American Heart Association</i> , 2020 , 9, e014199	6	7
23	Droplet-based microfluidics in biomedical applications. <i>Biofabrication</i> , 2021 ,	10.5	7
22	Glial cells influence cardiac permittivity as evidenced through in vitro and in silico models. <i>Biofabrication</i> , 2019 , 12, 015014	10.5	7
21	Targeted nanomedicines for the treatment of bone disease and regeneration. <i>Medicinal Research Reviews</i> , 2021 , 41, 1221-1254	14.4	7
20	Selective Trafficking of Light Chain-Conjugated Nanoparticles to the Kidney and Renal Cell Carcinoma. <i>Nano Today</i> , 2020 , 35, 100990-100990	17.9	6
19	Development and characterization of a hydrogel-based adhesive patch for sealing open-globe injuries. <i>Acta Biomaterialia</i> , 2021 ,	10.8	5
18	Tissue Regeneration: A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics (Adv. Funct. Mater. 3/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 187	00251.6	4

LIST OF PUBLICATIONS

17	Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration <i>Applied Physics Reviews</i> , 2021 , 8, 041415	17.3	4
16	Nanoengineered Shear-Thinning Hydrogel Barrier for Preventing Postoperative Abdominal Adhesions. <i>Nano-Micro Letters</i> , 2021 , 13, 212	19.5	4
15	Suturable elastomeric tubular grafts with patterned porosity for rapid vascularization of 3D constructs. <i>Biofabrication</i> , 2021 ,	10.5	4
14	Engineering a naturally derived hemostatic sealant for sealing internal organs <i>Materials Today Bio</i> , 2022 , 13, 100199	9.9	3
13	Bioactive Fibers: Hydrogel Templates for Rapid Manufacturing of Bioactive Fibers and 3D Constructs (Adv. Healthcare Mater. 14/2015). <i>Advanced Healthcare Materials</i> , 2015 , 4, 2050	10.1	2
12	Porous Biomaterials 2012 , 35-65		2
11	Template-Enabled Biofabrication of Thick Three-Dimensional Tissues with Patterned Perfusable Macro-Channels <i>Advanced Healthcare Materials</i> , 2021 , e2102123	10.1	2
10	Growth factor-eluting hydrogels for management of corneal defects. <i>Materials Science and Engineering C</i> , 2021 , 120, 111790	8.3	2
9	Recent advances in designing electroconductive biomaterials for cardiac tissue engineering <i>Advanced Healthcare Materials</i> , 2022 , e2200055	10.1	2
8	Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. <i>Transplantation Direct</i> , 2020 , 6, e589	2.3	1
7	Voices of biotech research. <i>Nature Biotechnology</i> , 2021 , 39, 281-286	44.5	1
6	A new aspiration device equipped with a hydro-separator for acute ischemic stroke due to challenging soft and stiff clots. <i>Interventional Neuroradiology</i> , 2021 , 15910199211015060	1.9	1
5	Engineering elastic sealants based on gelatin and elastin-like polypeptides for endovascular anastomosis. <i>Bioengineering and Translational Medicine</i> , 2021 , 6, e10240	14.8	1
4	Strategies to prevent dopamine oxidation and related cytotoxicity using various antioxidants and nitrogenation. <i>Emergent Materials</i> , 2019 , 2, 209-217	3.5	Ο
3	Effect of gelatin methacryloyl hydrogel on healing of the guinea pig vaginal wall with or without mesh augmentation <i>International Urogynecology Journal</i> , 2022 , 1	2	O
2	Functional Biomaterials: Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue (Adv. Funct. Mater. 39/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 4949-4949	15.6	
1	Dissolvable Stents: 3D-Printed Sugar-Based Stents Facilitating Vascular Anastomosis (Adv. Healthcare Mater. 24/2018). <i>Advanced Healthcare Materials</i> , 2018 , 7, 1870088	10.1	