Andre Izidoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8080361/publications.pdf

Version: 2024-02-01

41 papers

2,076 citations

304743

22

h-index

315739 38 g-index

41 all docs

41 docs citations

41 times ranked

1775 citing authors

#	Article	IF	CITATIONS
1	Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1750-1770.	4.4	244
2	Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion. Icarus, 2017, 297, 134-148.	2.5	197
3	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2019, 627, A83.	5.1	149
4	Formation of planetary systems by pebble accretion and migration: growth of gas giants. Astronomy and Astrophysics, 2019, 623, A88.	5.1	117
5	The empty primordial asteroid belt. Science Advances, 2017, 3, e1701138.	10.3	99
6	TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS. Astrophysical Journal, 2014, 782, 31.	4.5	98
7	Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3620-3635.	4.4	94
8	GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS. Astrophysical Journal Letters, 2015, 800, L22.	8.3	89
9	Formation of planetary systems by pebble accretion and migration. Astronomy and Astrophysics, 2021, 650, A152.	5.1	85
10	A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER. Astrophysical Journal, 2013, 767, 54.	4.5	81
11	The Delivery of Water During Terrestrial Planet Formation. Space Science Reviews, 2018, 214, 1.	8.1	76
12	TERRESTRIAL PLANET FORMATION IN THE PRESENCE OF MIGRATING SUPER-EARTHS. Astrophysical Journal, 2014, 794, 11.	4.5	63
13	Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy and Astrophysics, 2015, 582, A99.	5.1	63
14	THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM. Astrophysical Journal, 2016, 833, 40.	4.5	62
15	Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution. Astronomy and Astrophysics, 2019, 624, A109.	5.1	62
16	Migration-driven diversity of super-Earth compositions. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L81-L85.	3.3	61
17	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	2.5	60
18	Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2962-2972.	4.4	46

#	Article	IF	CITATIONS
19	Planetesimal rings as the cause of the Solar System's planetary architecture. Nature Astronomy, 2022, 6, 357-366.	10.1	43
20	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	4.5	39
21	The eccentricity distribution of giant planets and their relation to super-Earths in the pebble accretion scenario. Astronomy and Astrophysics, 2020, 643, A66.	5.1	30
22	An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system. Nature Astronomy, 2022, 6, 80-88.	10.1	25
23	The Effect of a Strong Pressure Bump in the Sun's Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion. Astrophysical Journal, 2021, 915, 62.	4.5	23
24	Identifying Inflated Super-Earths and Photo-evaporated Cores. Astrophysical Journal, 2018, 866, 104.	4.5	22
25	Born eccentric: Constraints on Jupiter and Saturn's pre-instability orbits. Icarus, 2021, 355, 114122.	2.5	22
26	Formation of short-period planets by disc migration. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3874-3885.	4.4	17
27	Building the Galilean moons system via pebble accretion and migration: a primordial resonant chain. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1854-1872.	4.4	14
28	Analysis of 25 mutual eclipses and occultations between the Galilean satellites observed from Brazil in $2009\hat{a}^2$ Monthly Notices of the Royal Astronomical Society, 2013 , 432 , 225 - 242 .	4.4	13
29	The †breaking the chains†migration model for super-Earth formation: the effect of collisional fragmentation. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2856-2868.	4.4	13
30	Formation of Terrestrial Planets. , 2018, , 2365-2423.		12
31	The origins of nearly coplanar, non-resonant systems of close-in super-Earths. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2493-2500.	4.4	10
32	A deeper view of the CoRoT-9 planetary system. Astronomy and Astrophysics, 2017, 603, A43.	5.1	9
33	Simulations of the Fomalhaut system within its local galactic environment. Monthly Notices of the Royal Astronomical Society, 2018, 473, 470-491.	4.4	7
34	Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits. Icarus, 2021, 367, 114556.	2. 5	7
35	Could Uranus and Neptune form by collisions of planetary embryos?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1647-1660.	4.4	6
36	Dynamical origin of the Dwarf Planet Ceres. Icarus, 2022, 379, 114933.	2.5	6

Andre Izidoro

#	Article	IF	CITATIONS
37	Co-orbital satellites of Saturn: congenital formation. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	5
38	Earth-size planet formation in the habitable zone of circumbinary stars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1045-1057.	4.4	5
39	Planet formation in a triple stellar system: implications of the third star's orbital inclination. International Journal of Astrobiology, 2015, 14, 153-163.	1.6	2
40	Formation of Terrestrial Planets. , 2018, , 1-59.		0
41	The Delivery of Water During Terrestrial Planet Formation. Space Sciences Series of ISSI, 2018, , 291-314.	0.0	0