Auguste Genovesio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8080129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Convex Cell Epithelial Modeling Unveils Cellular Interactions. , 2022, , .		0
2	Genome wide natural variation of H3K27me3 selectively marks genes predicted to be important for cell differentiation in <i>Phaeodactylum tricornutum</i> . New Phytologist, 2021, 229, 3208-3220.	7.3	19
3	PySpacell: A Python Package for Spatial Analysis of Cell Images. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 288-295.	1.5	12
4	In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata. Scientific Reports, 2020, 10, 7153.	3.3	16
5	PhaeoNet: A Holistic RNAseq-Based Portrait of Transcriptional Coordination in the Model Diatom Phaeodactylum tricornutum. Frontiers in Plant Science, 2020, 11, 590949.	3.6	26
6	Unraveling spatial cellular pattern by computational tissue shuffling. Communications Biology, 2020, 3, 605.	4.4	5
7	Coordination of transcriptional and translational regulations in human epithelial cells infected by <i>Listeria monocytogenes</i> . RNA Biology, 2020, 17, 1492-1507.	3.1	6
8	Artificially decreasing cortical tension generates aneuploidy in mouse oocytes. Nature Communications, 2020, 11, 1649.	12.8	26
9	Active Fluctuations of the Nuclear Envelope Shape the Transcriptional Dynamics in Oocytes. Developmental Cell, 2019, 51, 145-157.e10.	7.0	46
10	ALFA: annotation landscape for aligned reads. BMC Genomics, 2019, 20, 250.	2.8	9
11	Adult Neural Stem Cells and Multiciliated Ependymal Cells Share a Common Lineage Regulated by the Geminin Family Members. Neuron, 2019, 102, 159-172.e7.	8.1	90
12	Compound Functional Prediction Using Multiple Unrelated Morphological Profiling Assays. SLAS Technology, 2018, 23, 243-251.	1.9	16
13	FastSME: Faster and Smoother Manifold Extraction from 3D Stack. , 2018, , .		10
14	Monitored eCLIP: high accuracy mapping of RNA-protein interactions. Nucleic Acids Research, 2018, 46, 11553-11565.	14.5	11
15	Highâ€Throughput Optical Mapping of Replicating DNA. Small Methods, 2018, 2, 1800146.	8.6	22
16	Ependymal cilia beating induces an actin network to protect centrioles against shear stress. Nature Communications, 2018, 9, 2279.	12.8	66
17	mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development (Cambridge), 2017, 144, 201-210.	2.5	69
18	Smooth 2D manifold extraction from 3D image stack. Nature Communications, 2017, 8, 15554.	12.8	76

AUGUSTE GENOVESIO

#	Article	IF	CITATIONS
19	Calibrated mitotic oscillator drives motile ciliogenesis. Science, 2017, 358, 803-806.	12.6	75
20	An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation. Current Biology, 2017, 27, 2452-2464.e8.	3.9	15
21	mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Journal of Cell Science, 2017, 130, e1.1-e1.1.	2.0	0
22	Detection and tracking of overlapping cell nuclei for large scale mitosis analyses. BMC Bioinformatics, 2016, 17, 183.	2.6	13
23	High-Throughput In Vivo Genotoxicity Testing: An Automated Readout System for the Somatic Mutation and Recombination Test (SMART). PLoS ONE, 2015, 10, e0121287.	2.5	13
24	Increasing the Content of High-Content Screening: An Overview. Journal of Biomolecular Screening, 2014, 19, 640-650.	2.6	166
25	Dimerization, Oligomerization, and Aggregation of Human Amyotrophic Lateral Sclerosis Copper/Zinc Superoxide Dismutase 1 Protein Mutant Forms in Live Cells. Journal of Biological Chemistry, 2014, 289, 15094-15103.	3.4	45
26	Development of a multiplex phenotypic cell-based high throughput screening assay to identify novel hepatitis C virus antivirals. Antiviral Research, 2013, 99, 6-11.	4.1	15
27	Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment. Journal of Biomolecular Screening, 2013, 18, 1321-1329.	2.6	166
28	Transcription Sites Are Developmentally Regulated during the Asexual Cycle of Plasmodium falciparum. PLoS ONE, 2013, 8, e55539.	2.5	3
29	An Image-Based High-Content Screening Assay for Compounds Targeting Intracellular Leishmania donovani Amastigotes in Human Macrophages. PLoS Neglected Tropical Diseases, 2012, 6, e1671.	3.0	117
30	A High-Content Subtractive Screen for Selecting Small Molecules Affecting Internalization of GPCRs. Journal of Biomolecular Screening, 2012, 17, 379-385.	2.6	3
31	Quantification of protein interaction in living cells by twoâ€photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleedâ€through. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 112-119.	1.5	12
32	Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection. PLoS ONE, 2011, 6, e19733.	2.5	30
33	A method for discontinuous neurite reconstruction based on diffusion tensor, Hessian eigenvector, and diffused gradient vector fields. , 2011, , .		0
34	Automated Genome-Wide Visual Profiling of Cellular Proteins Involved in HIV Infection. Journal of Biomolecular Screening, 2011, 16, 945-958.	2.6	49
35	A modified fluorescence in situ hybridization protocol for Plasmodium falciparum greatly improves nuclear architecture conservation. Molecular and Biochemical Parasitology, 2010, 173, 48-52.	1.1	4
36	Contextual Automated 3D Analysis of Subcellular Organelles Adapted to High-Content Screening. Journal of Biomolecular Screening, 2010, 15, 847-857.	2.6	15

AUGUSTE GENOVESIO

#	Article	IF	CITATIONS
37	High Content Phenotypic Cell-Based Visual Screen Identifies Mycobacterium tuberculosis Acyltrehalose-Containing Glycolipids Involved in Phagosome Remodeling. PLoS Pathogens, 2010, 6, e1001100.	4.7	158
38	Antileishmanial High-Throughput Drug Screening Reveals Drug Candidates with New Scaffolds. PLoS Neglected Tropical Diseases, 2010, 4, e675.	3.0	123
39	In Vivo Colocalisation of oskar mRNA and Trans-Acting Proteins Revealed by Quantitative Imaging of the Drosophila Oocyte. PLoS ONE, 2009, 4, e6241.	2.5	23
40	High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors. PLoS Pathogens, 2009, 5, e1000645.	4.7	281
41	Automated High-Throughput siRNA Transfection in Raw 264.7 Macrophages: A Case Study for Optimization Procedure. Journal of Biomolecular Screening, 2009, 14, 151-160.	2.6	41
42	Active vector graph for regularized tesselation. , 2009, , .		1
43	IM.Grid, a Grid computing approach for Image Mining of High Throughput-High Content Screening. , 2008, , .		2
44	Automated Nuclear Analysis of Leishmania major Telomeric Clusters Reveals Changes in Their Organization during the Parasite's Life Cycle. PLoS ONE, 2008, 3, e2313.	2.5	11
45	3D Automated Nuclear Morphometric Analysis Using Active Meshes. Lecture Notes in Computer Science, 2007, , 356-367.	1.3	0
46	High-Content Classification of Nucleocytoplasmic Import or Export Inhibitors. Journal of Biomolecular Screening, 2007, 12, 621-627.	2.6	7
47	SUPPORT VECTOR MACHINES FOR AUTOMATIC DETECTION OF TUBERCULOSIS BACTERIA IN CONFOCAL MICROSCOPY IMAGES. , 2007, , .		16
48	Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Transactions on Image Processing, 2006, 15, 1062-1070.	9.8	164
49	Automated Confocal Microscope Bias Correction. AIP Conference Proceedings, 2006, , .	0.4	5
50	Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods, 2006, 3, 817-824.	19.0	271
51	SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 2006, 441, 770-773.	27.8	421
52	Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. Journal of Experimental Medicine, 2006, 203, 1939-1950.	8.5	165
53	Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. Journal of Cell Biology, 2006, 172, 189-199.	5.2	201
54	3D Mumford-Shah Based Active Mesh. Lecture Notes in Computer Science, 2006, , 208-217.	1.3	2

#	Article	IF	CITATIONS
55	Correction: Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. Journal of Cell Biology, 2006, 172, 951-951.	5.2	0
56	Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. Journal of Cell Biology, 2006, 174, i7-i7.	5.2	0
57	Tracking fluroescent spots in biological video microscopy. , 2003, 4964, 98.		8