Miho Terunuma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079862/publications.pdf

Version: 2024-02-01

304743 454955 2,191 30 22 30 citations h-index g-index papers 30 30 30 3031 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Disrupted Dentate Granule Cell Chloride Regulation Enhances Synaptic Excitability during Development of Temporal Lobe Epilepsy. Journal of Neuroscience, 2007, 27, 14012-14022.	3.6	234
2	mGluR5 stimulates gliotransmission in the nucleus accumbens. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1995-2000.	7.1	210
3	Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15037-15042.	7.1	190
4	The Dynamic Modulation of GABA _A Receptor Trafficking and Its Role in Regulating the Plasticity of Inhibitory Synapses. Physiological Reviews, 2011, 91, 1009-1022.	28.8	185
5	Phospho-Dependent Functional Modulation of GABAB Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase. Neuron, 2007, 53, 233-247.	8.1	167
6	Deficits in Phosphorylation of GABA _A Receptors by Intimately Associated Protein Kinase C Activity Underlie Compromised Synaptic Inhibition during Status Epilepticus. Journal of Neuroscience, 2008, 28, 376-384.	3.6	129
7	Methamphetamine-Evoked Depression of GABAB Receptor Signaling in GABA Neurons of the VTA. Neuron, 2012, 73, 978-989.	8.1	116
8	Cyclin E Constrains Cdk5 Activity to Regulate Synaptic Plasticity and Memory Formation. Developmental Cell, 2011, 21, 655-668.	7.0	110
9	Prolonged activation of NMDA receptors promotes dephosphorylation and alters postendocytic sorting of GABA _B receptors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13918-13923.	7.1	107
10	GABAA Receptor Phospho-Dependent Modulation Is Regulated by Phospholipase C-Related Inactive Protein Type 1, a Novel Protein Phosphatase 1 Anchoring Protein. Journal of Neuroscience, 2004, 24, 7074-7084.	3.6	98
11	Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7132-7137.	7.1	95
12	Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia, 2011, 59, 1084-1093.	4.9	61
13	The Availability of Surface GABAB Receptors Is Independent of \hat{I}^3 -Aminobutyric Acid but Controlled by Glutamate in Central Neurons. Journal of Biological Chemistry, 2008, 283, 24641-24648.	3.4	56
14	Deficits in spatial memory correlate with modified \hat{I}^3 -aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20039-20044.	7.1	53
15	The Ability of BDNF to Modify Neurogenesis and Depressive-Like Behaviors Is Dependent upon Phosphorylation of Tyrosine Residues 365/367 in the GABA _A -Receptor γ2 Subunit. Journal of Neuroscience, 2013, 33, 15567-15577.	3.6	49
16	Postsynaptic GABA _B Receptor Activity Regulates Excitatory Neuronal Architecture and Spatial Memory. Journal of Neuroscience, 2014, 34, 804-816.	3.6	49
17	Functional Modulation of GABAB Receptors by Protein Kinases and Receptor Trafficking. Advances in Pharmacology, 2010, 58, 113-122.	2.0	42
18	Compromising the phosphodependent regulation of the GABA $<$ sub $>$ A $<$ /sub $>$ R \hat{l}^2 3 subunit reproduces the core phenotypes of autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14805-14810.	7.1	41

#	Article	IF	CITATION
19	Direct interaction of N-ethylmaleimide-sensitive factor with GABAA receptor \hat{l}^2 subunits. Molecular and Cellular Neurosciences, 2005, 30, 197-206.	2.2	38
20	Direct Interaction of GABA _B Receptors with M ₂ Muscarinic Receptors Enhances Muscarinic Signaling. Journal of Neuroscience, 2009, 29, 15796-15809.	3.6	35
21	Enhanced Tonic Inhibition Influences the Hypnotic and Amnestic Actions of the Intravenous Anesthetics Etomidate and Propofol. Journal of Neuroscience, 2013, 33, 7264-7273.	3.6	31
22	A Role for Prefrontal Cortical NMDA Receptors in Murine Alcohol-Heightened Aggression. Neuropsychopharmacology, 2018, 43, 1224-1234.	5.4	29
23	Glutamine Synthetase Stability and Subcellular Distribution in Astrocytes Are Regulated by Î ³ -Aminobutyric Type B Receptors. Journal of Biological Chemistry, 2014, 289, 28808-28815.	3.4	17
24	Purinergic receptor activation facilitates astrocytic GABAB receptor calcium signalling. Neuropharmacology, 2015, 88, 74-81.	4.1	11
25	Direct Interaction of PP2A Phosphatase with GABAB Receptors Alters Functional Signaling. Journal of Neuroscience, 2020, 40, 2808-2816.	3.6	11
26	A comparative analysis of kainate receptor GluK2 and GluK5 knockout mice in a pure genetic background. Behavioural Brain Research, 2021, 405, 113194.	2.2	7
27	Perivascular Hedgehog responsive cells play a critical role in peripheral nerve regeneration via controlling angiogenesis. Neuroscience Research, 2021, 173, 62-70.	1.9	7
28	Ammonia induces amyloidogenesis in astrocytes by promoting amyloid precursor protein translocation into the endoplasmic reticulum. Journal of Biological Chemistry, 2022, 298, 101933.	3.4	6
29	Drug-Induced NaÃ-ve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic β-Cell Lineage. Journal of Clinical Medicine, 2020, 9, 2838.	2.4	5
30	Sustained laryngeal transient receptor potential vanilloid 1 activation inhibits mechanically induced swallowing in anesthetized rats. American Journal of Physiology - Renal Physiology, 2020, 319, G412-G419.	3.4	2