György Szabó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079829/publications.pdf

Version: 2024-02-01

108 papers 10,944 citations

57758 44 h-index 29157 104 g-index

108 all docs

 $\frac{108}{\text{docs citations}}$

108 times ranked 2426 citing authors

#	Article	IF	CITATIONS
1	General features of Nash equilibria in combinations of elementary interactions in symmetric two-person games. European Physical Journal B, 2021, 94, 1.	1.5	3
2	Interplay of Elementary Interactions Causing Social Traps in Evolutionary Games. Frontiers in Physics, 2020, 8, .	2.1	3
3	Statistical analyses of cyclic and starlike hierarchical dominances in directed graphs. Physical Review E, 2019, 100, 032301.	2.1	2
4	Games, graphs and Kirchhoff laws. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 416-423.	2.6	1
5	Bursts in three-strategy evolutionary ordinal potential games on a square lattice. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1379-1387.	2.6	9
6	Social dilemmas in multistrategy evolutionary potential games. Physical Review E, 2018, 97, 012305.	2.1	13
7	Entropy Affects the Competition of Ordered Phases. Entropy, 2018, 20, 115.	2.2	4
8	Separation of cyclic and starlike hierarchical dominance in evolutionary matrix games. Physical Review E, 2017, 95, 012320.	2.1	8
9	Evolutionary games combining two or three pair coordinations on a square lattice. Physical Review E, 2017, 96, 042101.	2.1	7
10	Evolutionary games with coordination and self-dependent interactions. Physical Review E, 2017, 95, 012303.	2.1	10
11	Anisotropic invasion and its consequences in two-strategy evolutionary games on a square lattice. Physical Review E, 2016, 94, 052314.	2.1	4
12	Extension of a spatial evolutionary coordination game with neutral options. Physical Review E, 2016, 93, 052108.	2.1	13
13	The role of mixed strategies in spatial evolutionary games. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 198-206.	2.6	10
14	Evolutionary potential games on lattices. Physics Reports, 2016, 624, 1-60.	25.6	67
15	Payoff components and their effects in a spatial three-strategy evolutionary social dilemma. Physical Review E, 2015, 92, 012813.	2.1	13
16	Congestion phenomena caused by matching pennies in evolutionary games. Physical Review E, 2015, 91, 032110.	2.1	8
17	Four classes of interactions for evolutionary games. Physical Review E, 2015, 92, 022820.	2.1	26
18	Self-organizing patterns in an evolutionary rock-paper-scissors game for stochastic synchronized strategy updates. Physical Review E, 2014, 90, 042920.	2.1	7

#	Article	IF	Citations
19	Evolutionary matching-pennies game on bipartite regular networks. Physical Review E, 2014, 89, 042820.	2.1	12
20	Fourier decomposition of payoff matrix for symmetric three-strategy games. Physical Review E, 2014, 90, 042811.	2.1	18
21	Coexistence of fraternity and egoism for spatial social dilemmas. Journal of Theoretical Biology, 2013, 317, 126-132.	1.7	21
22	Diverging fluctuations in a spatial five-species cyclic dominance game. Physical Review E, 2013, 88, 022123.	2.1	70
23	Defense Mechanisms of Empathetic Players in the Spatial Ultimatum Game. Physical Review Letters, 2012, 109, 078701.	7.8	188
24	Accuracy in strategy imitations promotes the evolution of fairness in the spatial ultimatum game. Europhysics Letters, 2012, 100, 28005.	2.0	64
25	Selfishness, fraternity, and other-regarding preference in spatial evolutionary games. Journal of Theoretical Biology, 2012, 299, 81-87.	1.7	76
26	Phase diagrams for the spatial public goods game with pool punishment. Physical Review E, 2011, 83, 036101.	2.1	309
27	Competition of individual and institutional punishments in spatial public goods games. Physical Review E, 2011, 84, 046106.	2.1	121
28	Defector-accelerated cooperativeness and punishment in public goods games with mutations. Physical Review E, 2010, 81, 057104.	2.1	110
29	Evolutionary Establishment of Moral and Double Moral Standards through Spatial Interactions. PLoS Computational Biology, 2010, 6, e1000758.	3.2	294
30	Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New Journal of Physics, 2010, 12, 083005.	2.9	314
31	Ordering in spatial evolutionary games for pairwise collective strategy updates. Physical Review E, 2010, 82, 026110.	2.1	32
32	Mechanisms Supporting Cooperation for the Evolutionary Prisoner's Dilemma Games. New Economic Windows, 2010, , 24-31.	1.0	0
33	Probability currents and entropy production in nonequilibrium lattice systems. Physical Review E, 2010, 82, 011105.	2.1	19
34	Impact of aging on the evolution of cooperation in the spatial prisoner's dilemma game. Physical Review E, 2009, 80, 021901.	2.1	173
35	Selection of noise level in strategy adoption for spatial social dilemmas. Physical Review E, 2009, 80, 056112.	2.1	116
36	Phase diagrams for three-strategy evolutionary prisoner's dilemma games on regular graphs. Physical Review E, 2009, 80, 056104.	2.1	88

#	Article	IF	Citations
37	Topology-independent impact of noise on cooperation in spatial public goods games. Physical Review E, 2009, 80, 056109.	2.1	321
38	Cooperation in spatial prisoner's dilemma with two types of players for increasing number of neighbors. Physical Review E, 2009, 79, 016106.	2.1	96
39	Motion of influential players can support cooperation in Prisoner's Dilemma. European Physical Journal B, 2009, 71, 579-585.	1.5	69
40	Selection of dynamical rules in spatial Prisoner's Dilemma games. Europhysics Letters, 2009, 87, 18007.	2.0	89
41	Diversity of reproduction rate supports cooperation in the prisoner's dilemma game on complex networks. European Physical Journal B, 2008, 61, 505-509.	1.5	157
42	Restricted connections among distinguished players support cooperation. Physical Review E, 2008, 78, 066101.	2.1	166
43	Evolutionary prisoner's dilemma game on Newman-Watts networks. Physical Review E, 2008, 77, 026109.	2.1	122
44	Phase transitions induced by variation of invasion rates in spatial cyclic predator-prey models with four or six species. Physical Review E, 2008, 77, 011906.	2.1	46
45	Self-organizing patterns maintained by competing associations in a six-species predator-prey model. Physical Review E, 2008, 77, 041919.	2.1	56
46	Cyclical interactions with alliance-specific heterogeneous invasion rates. Physical Review E, 2007, 75, 052102.	2.1	111
47	Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner's Dilemma games. Europhysics Letters, 2007, 77, 30004.	2.0	381
48	Segregation process and phase transition in cyclic predator-prey models with an even number of species. Physical Review E, 2007, 76, 051921.	2.1	47
49	Survival of species in patchy landscapes: percolation in space and time., 2007,, 409-440.		14
50	Competing associations in bacterial warfare with two toxins. Journal of Theoretical Biology, 2007, 248, 736-744.	1.7	43
51	Evolutionary games on graphs. Physics Reports, 2007, 446, 97-216.	25.6	2,360
52	Cooperation in the noisy case: Prisoner's dilemma game on two types of regular random graphs. Physical Review E, 2006, 73, 067103.	2.1	287
53	Dynamics of populations on the verge of extinction. Oikos, 2005, 109, 291-296.	2.7	7 5
54	Competing associations in six-species predator–prey models. Journal of Physics A, 2005, 38, 6689-6702.	1.6	54

#	Article	IF	CITATIONS
55	Evolutionary prisoner's dilemma game on hierarchical lattices. Physical Review E, 2005, 71, 036133.	2.1	106
56	Three-state Potts model in combination with the rock-scissors-paper game. Physical Review E, 2005, 71, 027102.	2.1	21
57	Phase diagrams for an evolutionary prisoner's dilemma game on two-dimensional lattices. Physical Review E, 2005, 72, 047107.	2.1	440
58	Game theory and physics. American Journal of Physics, 2005, 73, 405-414.	0.7	414
59	Rock-scissors-paper game on regular small-world networks. Journal of Physics A, 2004, 37, 2599-2609.	1.6	152
60	Phase transition and selection in a four-species cyclic predator-prey model. Physical Review E, 2004, 69, 031911.	2.1	79
61	Spreading of families in cyclic predator-prey models. Physical Review E, 2004, 70, 012901.	2.1	13
62	Cooperation for volunteering and partially random partnerships. Physical Review E, 2004, 69, 036107.	2.1	115
63	Vertex dynamics during domain growth in three-state models. Physical Review E, 2004, 70, 027101.	2.1	15
64	Phase transitions for rock-scissors-paper game on different networks. Physical Review E, 2004, 70, 037102.	2.1	72
65	Prisoner's dilemma and public goods games in different geometries: Compulsory versus voluntary interactions. Complexity, 2003, 8, 31-38.	1.6	145
66	Influence of extended dynamics on phase transitions in a driven lattice gas. Physical Review E, 2002, 65, 047101.	2.1	10
67	Three-state cyclic voter model extended with Potts energy. Physical Review E, 2002, 65, 036115.	2.1	48
68	Evolutionary prisoner's dilemma games with voluntary participation. Physical Review E, 2002, 66, 062903.	2.1	224
69	A cellular automaton with two phase transitions. Journal of Physics A, 2002, 35, L189-L192.	1.6	1
70	Generalized contact process on random environments. Physical Review E, 2002, 65, 066111.	2.1	12
71	Phase Transitions and Volunteering in Spatial Public Goods Games. Physical Review Letters, 2002, 89, 118101.	7.8	542
72	Phase transition in a spatial Lotka-Volterra model. Physical Review E, 2001, 63, 061904.	2.1	71

#	Article	IF	CITATIONS
73	Defensive alliances in spatial models of cyclical population interactions. Physical Review E, 2001, 64, 042902.	2.1	61
74	Hysteresis in a dipolar Ising model. Physica B: Condensed Matter, 2000, 275, 187-190.	2.7	3
75	Hysteresis modeling. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 592-596.	2.3	8
76	Branching annihilating random walk on random regular graphs. Physical Review E, 2000, 62, 7474-7477.	2.1	16
77	Spatial evolutionary prisoner's dilemma game with three strategies and external constraints. Physical Review E, 2000, 62, 1095-1103.	2.1	83
78	Branching annihilating random walks with parity conservation on a square lattice. Physical Review E, 1999, 59, R2509-R2511.	2.1	7
79	Vortex dynamics in a three-state model under cyclic dominance. Physical Review E, 1999, 60, 3776-3780.	2.1	31
80	Magnetic hysteresis in an Ising-like dipole-dipole model. Physical Review B, 1998, 58, 5584-5587.	3.2	37
81	A lattice-gas model for alkali-metal fullerides: body-centred-cubic structure. Journal of Physics Condensed Matter, 1998, 10, 4211-4219.	1.8	1
82	Evolutionary prisoner's dilemma game on a square lattice. Physical Review E, 1998, 58, 69-73.	2.1	1,261
83	Domain growth controlled by interfacial transport in two-dimensional systems. Physical Review E, 1998, 57, 6172-6175.	2.1	4
84	Anisotropic ordering in a two-temperature lattice gas. Physical Review E, 1997, 55, 2255-2259.	2.1	13
85	Self-organizing domain structure in a driven lattice gas. Physical Review E, 1997, 55, 5275-5279.	2.1	7
86	Generalized mean-field study of a driven lattice gas. Physical Review E, 1996, 53, 2196-2199.	2.1	15
87	A lattice-gas model for alkali-metal fullerides: face-centred-cubic structure. Journal of Physics Condensed Matter, 1996, 8, 10959-10971.	1.8	3
88	Anisotropic polydomain structure in a driven lattice gas with repulsive interaction. Physical Review E, 1994, 49, 299-304.	2.1	11
89	Extended mean-field study of a stochastic cellular automaton. Physical Review E, 1994, 49, 2764-2768.	2.1	14
90	Instabilities and pattern formation in driven diffusive systems. Physical Review E, 1994, 49, 3508-3511.	2.1	2

#	Article	IF	CITATIONS
91	Evolution and extinction of families in cellular automata. Physical Review E, 1994, 49, 5900-5902.	2.1	4
92	Universality change in stochastic cellular automaton with applied site exchange. Physical Review E, 1994, 49, R3555-R3557.	2.1	1
93	Coupled-chain approximation for driven lattice-gas models. Physical Review B, 1993, 47, 8260-8262.	3.2	2
94	Breaking of forward-backward symmetry in driven systems. Physical Review E, 1993, 48, 611-613.	2.1	11
95	Phase-transition study of a one-dimensional probabilistic site-exchange cellular automaton. Physical Review E, 1993, 48, 3168-3171.	2.1	19
96	Orientation in a driven lattice gas. Physical Review B, 1992, 46, 11432-11438.	3.2	5
97	Correlations induced by transport in one-dimensional lattice gas. Physical Review A, 1991, 44, 6375-6378.	2.5	22
98	Monte Carlo simulation of reorientation driven by oxygen transport in YBa2Cu3O6.5. Physical Review B, 1991, 43, 13614-13617.	3.2	1
99	Transport-driven reorientation in a square lattice-gas model. Physical Review A, 1990, 41, 2235-2238.	2.5	9
100	Thermodynamic aspects of chemically curved crystals. Journal of Materials Science, 1989, 24, 2295-2299.	3.7	0
101	Growth of BCSCO single crystals by a slow-cooling flux method. Journal of the Less Common Metals, 1989, 155, 229-234.	0.8	13
102	Monte carlo simulation of a coulomb gas in simple cubic lattice. Solid State Ionics, 1988, 28-30, 86-88.	2.7	1
103	Influence of temperature oscillation on measured crystal weight during Czochralski growth. Journal of Crystal Growth, 1987, 83, 599-601.	1.5	1
104	Experimental model of magnetic Czochralski growth. Journal of Crystal Growth, 1986, 78, 558-560.	1.5	4
105	Fluctuations of melt temperature and growth rate during Bi4Ge3O12 growth. Journal of Crystal Growth, 1986, 79, 303-307.	1.5	5
106	Lattice gas model on tetrahedral sites of a BCC lattice. Journal of Physics C: Solid State Physics, 1986, 19, 3775-3787.	1.5	16
107	Thermal strain during Czochralski growth. Journal of Crystal Growth, 1985, 73, 131-141.	1.5	38
108	Heat diffusivity and heat conductivity of Ni near the Curie point. Solid State Communications, 1977, 21, 487-490.	1.9	8