
Daniel Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079658/publications.pdf Version: 2024-02-01

DANIEL VOCT

#	Article	IF	CITATIONS
1	Functional Maturation of hPSC-Derived Forebrain Interneurons Requires an Extended Timeline and Mimics Human Neural Development. Cell Stem Cell, 2013, 12, 573-586.	5.2	470
2	Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18367-18372.	3.3	225
3	Forebrain GABAergic Neuron Precursors Integrate into Adult Spinal Cord and Reduce Injury-Induced Neuropathic Pain. Neuron, 2012, 74, 663-675.	3.8	190
4	Pyramidal Neurons in Prefrontal Cortex Receive Subtype-Specific Forms of Excitation and Inhibition. Neuron, 2014, 81, 61-68.	3.8	177
5	Cortical interneuron development: a tale of time and space. Development (Cambridge), 2017, 144, 3867-3878.	1.2	166
6	A Class of GABAergic Neurons in the Prefrontal Cortex Sends Long-Range Projections to the Nucleus Accumbens and Elicits Acute Avoidance Behavior. Journal of Neuroscience, 2014, 34, 11519-11525.	1.7	152
7	Lhx6 and Lhx8 Coordinately Induce Neuronal Expression of Shh that Controls the Generation of Interneuron Progenitors. Neuron, 2011, 70, 939-950.	3.8	134
8	Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures. Neuron, 2017, 93, 291-298.	3.8	128
9	Lhx6 Directly Regulates Arx and CXCR7 to Determine Cortical Interneuron Fate and Laminar Position. Neuron, 2014, 82, 350-364.	3.8	118
10	The Parvalbumin/Somatostatin Ratio Is Increased in Pten Mutant Mice and by Human PTEN ASD Alleles. Cell Reports, 2015, 11, 944-956.	2.9	111
11	A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. ELife, 2016, 5, .	2.8	101
12	Abnormal neuronal networks and seizure susceptibility in mice overexpressing the APP intracellular domain. Neurobiology of Aging, 2011, 32, 1725-1729.	1.5	98
13	<i>Dlx1<i>and</i>Dlx2</i> Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cerebral Cortex, 2018, 28, 3797-3815.	1.6	72
14	Mouse <i>Cntnap2</i> and Human <i>CNTNAP2</i> ASD Alleles Cell Autonomously Regulate PV+ Cortical Interneurons. Cerebral Cortex, 2018, 28, 3868-3879.	1.6	71
15	Subpallial Enhancer Transgenic Lines: a Data and Tool Resource to Study Transcriptional Regulation of GABAergic Cell Fate. Neuron, 2016, 92, 59-74.	3.8	62
16	NPAS1 Represses the Generation of Specific Subtypes of Cortical Interneurons. Neuron, 2014, 84, 940-953.	3.8	60
17	<i>Coup-TF1&2</i> (<i>Nr2f1</i> and <i>Nr2f2</i>) control subtype and laminar identity of MGE-derived neocortical interneurons. Development (Cambridge), 2017, 144, 2837-2851.	1.2	59
18	ARHGAP4 is a novel RhoGAP that mediates inhibition of cell motility and axon outgrowth. Molecular and Cellular Neurosciences, 2007, 36, 332-342.	1.0	53

DANIEL VOGT

#	Article	IF	CITATIONS
19	Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell Reports, 2019, 26, 1157-1173.e5.	2.9	44
20	Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons. Nature Communications, 2019, 10, 4994.	5.8	39
21	<i>Lhx6</i> and <i>Lhx8</i> promote palate development through negative regulation of a cell cycle inhibitor gene, <i>p57^{Kip2}</i> . Human Molecular Genetics, 2015, 24, 5024-5039.	1.4	31
22	Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavl²4 versus Cavl²2 subunits to synaptic terminals. Journal of Cell Biology, 2007, 178, 489-502.	2.3	30
23	Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer. Molecular Autism, 2019, 10, 17.	2.6	30
24	Use of "MGE Enhancers―for Labeling and Selection of Embryonic Stem Cell-Derived Medial Ganglionic Eminence (MGE) Progenitors and Neurons. PLoS ONE, 2013, 8, e61956.	1.1	28
25	Viral-mediated Labeling and Transplantation of Medial Ganglionic Eminence (MGE) Cells for ln Vivo Studies. Journal of Visualized Experiments, 2015, , .	0.2	27
26	The Cytokine CXCL12 Promotes Basket Interneuron Inhibitory Synapses in the Medial Prefrontal Cortex. Cerebral Cortex, 2017, 27, 4303-4313.	1.6	24
27	CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. Journal of Neuroscience, 2019, 39, 177-192.	1.7	24
28	Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon. Developmental Biology, 2014, 385, 94-106.	0.9	22
29	Dapper Antagonist of Catenin-1 Cooperates with Dishevelled-1 during Postsynaptic Development in Mouse Forebrain GABAergic Interneurons. PLoS ONE, 2013, 8, e67679.	1.1	22
30	Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. ELife, 2020, 9, .	2.8	22
31	Nf1deletion results in depletion of theLhx6transcription factor and a specific loss of parvalbumin+cortical interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6189-6195.	3.3	19
32	Parallel functional testing identifies enhancers active in early postnatal mouse brain. ELife, 2021, 10, .	2.8	19
33	Interneuron Transplantation Rescues Social Behavior Deficits without Restoring Wild-Type Physiology in a Mouse Model of Autism with Excessive Synaptic Inhibition. Journal of Neuroscience, 2020, 40, 2215-2227.	1.7	17
34	Sequential perturbations to mouse corticogenesis following in utero maternal immune activation. ELife, 2021, 10, .	2.8	17
35	Emerging Role of ODC1 in Neurodevelopmental Disorders and Brain Development. Genes, 2021, 12, 470.	1.0	15
36	Integrated RNA Sequencing Reveals Epigenetic Impacts of Diesel Particulate Matter Exposure in Human Cerebral Organoids. Developmental Neuroscience, 2020, 42, 195-207.	1.0	12

DANIEL VOGT

#	Article	IF	CITATIONS
37	Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. ENeuro, 2020, 7, ENEURO.0211-20.2020.	0.9	12
38	Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development (Cambridge), 2020, 147, .	1.2	10
39	A Human TSC1 Variant Screening Platform in Gabaergic Cortical Interneurons for Genotype to Phenotype Assessments. Frontiers in Molecular Neuroscience, 2020, 13, 573409.	1.4	6
40	Regulatory Elements Inserted into AAVs Confer Preferential Activity in Cortical Interneurons. ENeuro, 2020, 7, .	0.9	4