
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079579/publications.pdf Version: 2024-02-01

Διτλε Η Βλάτλ

#	Article	IF	CITATIONS
1	Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 2004, 43, 797-820.	1.9	136
2	Chitosan–caseinate bilayer coatings for paper packaging materials. Carbohydrate Polymers, 2014, 99, 508-516.	5.1	125
3	Rice straw as precursor of activated carbons: Activation with ortho-phosphoric acid. Journal of Hazardous Materials, 2010, 181, 27-34.	6.5	123
4	Selected properties of particleboard panels manufactured from rice straws of different geometries. Bioresource Technology, 2010, 101, 4662-4666.	4.8	112
5	Performance of improved bacterial cellulose application in the production of functional paper. Journal of Applied Microbiology, 2009, 107, 2098-2107.	1.4	90
6	Comparative evaluation for controlling release of niacin from protein- and cellulose-chitosan based hydrogels. International Journal of Biological Macromolecules, 2020, 150, 228-237.	3.6	57
7	Optimizing the chitosan-cellulose based drug delivery system for controlling the ciprofloxacin release versus organic/inorganic crosslinker, characterization and kinetic study. International Journal of Biological Macromolecules, 2020, 165, 1496-1506.	3.6	50
8	Influence of coating by Cu and Ag nanoparticles via pulsed laser deposition technique on optical, electrical and mechanical properties of cellulose paper. Journal of Molecular Structure, 2020, 1203, 127472.	1.8	49
9	Cellulose membranes for reverse osmosis Part I. RO cellulose acetate membranes including a composite with polypropylene. Desalination, 2003, 159, 171-181.	4.0	48
10	Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards. Industrial Crops and Products, 2011, 33, 665-669.	2.5	48
11	Novel approach for synthesizing different shapes of carbon nanotubes from rice straw residue. Journal of Environmental Chemical Engineering, 2018, 6, 6263-6274.	3.3	46
12	Optical, electrical and mechanical studies of paper sheets coated by metals (Cu and Ag) via pulsed laser deposition. Journal of Molecular Structure, 2019, 1198, 126927.	1.8	46
13	Evaluation of Rice Straw-Based Hydrogels for Purification of Wastewater. Polymer-Plastics Technology and Engineering, 2013, 52, 1074-1080.	1.9	44
14	Efficient treatment of rice byproducts for preparing high-performance activated carbons. Journal of Cleaner Production, 2019, 207, 284-295.	4.6	42
15	Evaluation of some organic-based biopolymers as green inhibitors for calcium sulfate scales. The Environmentalist, 2008, 28, 421-428.	0.7	40
16	Properties of modified carboxymethyl cellulose and its use as bioactive compound. Carbohydrate Polymers, 2016, 153, 641-651.	5.1	40
17	Preformed Amide-containing biopolymer for Improving the Environmental Performance of Synthesized Urea–formaldehyde in Agro-fiber Composites. Journal of Polymers and the Environment, 2011, 19, 405-412.	2.4	39
18	New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydrate Polymers, 2008, 74, 301-308.	5.1	38

#	Article	IF	CITATIONS
19	Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites. RSC Advances, 2014, 4, 21794-21801.	1.7	38
20	Metal chelates with some cellulose derivatives. Part III. Synthesis and structural chemistry of nickel (II) and copper (II) complexes with carboxymethyl cellulose. Polymer International, 1995, 37, 93-96.	1.6	37
21	Metal Chelates with Some Cellulose Derivatives: V. Synthesis and Characterization of Some Iron(III) Complexes with Cellulose Ethers. Polymer International, 1997, 42, 157-162.	1.6	37
22	Preparation, Characterization and Properties of Paper Sheets Made from Chemically Modified Wood Pulp Treated with Metal Salts. International Journal of Polymeric Materials and Polymeric Biomaterials, 1998, 42, 1-26.	1.8	37
23	Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. International Journal of Biological Macromolecules, 2018, 107, 1364-1372.	3.6	37
24	Optimizing the route for production of activated carbon from <i>Casuarina equisetifolia</i> fruit waste. Royal Society Open Science, 2018, 5, 171578.	1.1	37
25	Metal Chelates with Some Cellulose Derivatives. II. Preparation and Characterization of Co(II)-CMC Complexes. Polymer-Plastics Technology and Engineering, 1994, 33, 781-791.	1.9	36
26	Behaviour of Rice-Byproducts and Optimizing the Conditions for Production of High Performance Natural Fiber Polymer Composites. Journal of Polymers and the Environment, 2012, 20, 838-847.	2.4	36
27	Performance of rice strawâ€based composites using environmentally friendly polyalcoholic polymersâ€based adhesive system. Pigment and Resin Technology, 2013, 42, 24-33.	0.5	36
28	Fluorescence behavior of new 3-pyridinecarbonitrile containing compounds and their application in security paper. Dyes and Pigments, 2002, 54, 1-10.	2.0	35
29	Metal chelates with some cellulose derivatives. Part I. Preparation and characterization of chromium (III)–carboxymethyl cellulose complexes. Polymer International, 1994, 35, 27-33.	1.6	34
30	Enhancing the performance of carboxymethyl cellulose by chitosan in producing barrier coated paper sheets. Nordic Pulp and Paper Research Journal, 2015, 30, 617-625.	0.3	32
31	Comparative study on the performance of carbon nanotubes prepared from agro- and xerogels as carbon supports. Journal of Analytical and Applied Pyrolysis, 2017, 128, 114-120.	2.6	31
32	Designing microporous activated carbons from biomass for carbon dioxide adsorption at ambient temperature. A comparison between bagasse and rice by-products. Journal of Cleaner Production, 2021, 294, 126260.	4.6	28
33	The role of side chain of amino acid on performance of their conjugates with carboxymethyl cellulose and their Pd(II) complexes as bioactive agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 21-31.	1.8	24
34	Enhancing environmental performance of formaldehyde-based adhesives in lignocellulosic composites, part III: evaluation of some starch derivatives. Designed Monomers and Polymers, 2006, 9, 325-347.	0.7	23
35	Liquid crystal behavior of cellulose nanoparticlesâ€ethyl cellulose composites: Preparation, characterization, and rheology. Journal of Applied Polymer Science, 2021, 138, 50067.	1.3	23
36	Synthesis and evaluation of protein-based biopolymer in production of silver nanoparticles as bioactive compound versus carbohydrates-based biopolymers. Royal Society Open Science, 2020, 7, 200928.	1.1	22

#	Article	IF	CITATIONS
37	Synthesis of fluorescence active pyridinedicarbonitriles and studying their application in functional paper. Materials Letters, 2011, 65, 1713-1718.	1.3	20
38	Hydroxyethyl Cellulose. II. IR Spectra and Their Relation with the Dielectric Properties of Hydroxyethyl Celluloses. Polymer-Plastics Technology and Engineering, 1994, 33, 161-174.	1.9	19
39	Performance of Carbon Xerogels in the Production of Environmentally Friendly Urea Formaldehydeâ€Bagasse Composites. Clean - Soil, Air, Water, 2017, 45, 1600524.	0.7	19
40	Synthesis, quantitative structure–property relationship study of novel fluorescence active 2-pyrazolines and application. Royal Society Open Science, 2018, 5, 171964.	1.1	19
41	Some Semiconductor Properties of Carboxymethyl Cellulose-Copper Complexes. Polymer-Plastics Technology and Engineering, 1999, 38, 1095-1105.	1.9	17
42	Comparative evaluation of xerogel-based activated carbons synthesized from aliphatic aldehydes of different chain lengths. Soft Materials, 2016, 14, 297-308.	0.8	17
43	Kinetic Studies on the Pyrolytic Degradation of Phenolic Resin Paper Sheets Using DTA Technique. I. Phenolic Resins as Beater Additives. Polymer-Plastics Technology and Engineering, 1994, 33, 135-147.	1.9	14
44	Metal chelates with some cellulose derivatives; part IV. Structural chemistry of HEC complexes. Cellulose, 1996, 3, 1-10.	2.4	14
45	High Water Absorbents from Lignocelluloses. II. Novel Soil Conditioners for Sandy Soil from Lignocellulosic Wastes. Polymer-Plastics Technology and Engineering, 2004, 43, 779-795.	1.9	14
46	Comparison of Copper-crosslinked Carboxymethyl Cellulose Versus Biopolymer-based Hydrogels for Controlled Release of Fertilizer. Polymer-Plastics Technology and Materials, 2021, 60, 1884-1897.	0.6	14
47	HIGH WATER ABSORBENTS FROM LIGNOCELLULOSES. I. EFFECT OF REACTION VARIABLES ON THE WATER ABSORBENCY OF POLYMERIZED LIGNOCELLULOSES. Polymer-Plastics Technology and Engineering, 2000, 39, 905-926.	1.9	13
48	Valorization of Biomass Pulping Waste as Effective Additive for Enhancing the Performance of Films Based on Liquid Crystal Hydroxypropyl-Cellulose Nanocomposites. Waste and Biomass Valorization, 2022, 13, 2217-2231.	1.8	13
49	A green approach to the valorization of kraft lignin for the production ofÂnanocomposite gels to control theÂrelease of fertilizer. Biofuels, Bioproducts and Biorefining, 2022, 16, 488-498.	1.9	13
50	The Role of Chitosan in Improving the Ageing Resistance of Rosin Sized Paper. Restaurator, 2003, 24, .	0.2	12
51	Novel fluorescent security marker. Part II: application of novel 6-alkoxy-2-amino-3,5-pyridinedicarbonitrile nanoparticles in safety paper. RSC Advances, 2014, 4, 59614-59625.	1.7	12
52	Utilization of Waste Paper in the Manufacture of Natural Rubber Composite for Radiation Shielding. Progress in Rubber, Plastics and Recycling Technology, 2004, 20, 287-310.	0.8	11
53	Comparative DFT Computational Studies with Experimental Investigations for Novel Synthesized Fluorescent Pyrazoline Derivatives. Journal of Fluorescence, 2018, 28, 913-931.	1.3	11
54	Synthesis, Characterization, Speciation, and Biological Studies on Metal Chelates of Carbohydrates with Molecular Docking Investigation. Macromolecular Materials and Engineering, 2021, 306, 2000633.	1.7	11

#	Article	IF	CITATIONS
55	CHARACTERIZATION OF POLYMER COMPLEXES BY THERMAL AND IR SPECTRAL ANALYSES. Polymer-Plastics Technology and Engineering, 2000, 39, 887-904.	1.9	10
56	Formaldehyde-Free Environmentally Friendly Composites Based on Agricultural Waste. I. Novel Adhesive System. Polymer-Plastics Technology and Engineering, 2004, 43, 745-777.	1.9	10
57	High Water Absorbents from Lignocelluloses. Part III: Upgrading the Utilization of Old Newspaper [ONP] in Agronomic Application. Polymer-Plastics Technology and Engineering, 2007, 46, 311-319.	1.9	10
58	Bio-chemical properties of sandy calcareous soil treated with rice straw-based hydrogels. Journal of the Saudi Society of Agricultural Sciences, 2016, 15, 188-194.	1.0	10
59	Comparison of the benzene sorption properties of metal organic frameworks: influence of the textural properties. Environmental Sciences: Processes and Impacts, 2019, 21, 407-412.	1.7	10
60	Synthesis and evaluating of carbon nanoallotropeâ€biomacromolecule gel composites as drug delivery systems. Journal of Applied Polymer Science, 2021, 138, 50830.	1.3	10
61	Utilization of bacteria in rotten Guava for production of bacterial cellulose from isolated and protein waste. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100076.	1.6	10
62	Some Properties of Wood Pulp-Polymer Complexes Paper Sheets. International Journal of Polymeric Materials and Polymeric Biomaterials, 1997, 36, 131-149.	1.8	9
63	Permanence of Paper 1. Problems and Permanency of Alum-Rosin Sized. Paper Sheets from Wood Pulp. Restaurator, 1998, 19, .	0.2	9
64	Integrated Study of the Potential Application of Remediated CCA Treated Spruce Wood in MDF Production. Industrial & Engineering Chemistry Research, 2013, 52, 8962-8968.	1.8	8
65	Optimising the process for production of high performance bagasse-based composites from rice bran-UF adhesive system. Pigment and Resin Technology, 2014, 43, 212-218.	0.5	8
66	Novel trends for synthesis of carbon nanostructures from agricultural wastes. , 2020, , 59-74.		8
67	Some aspects of the rheological properties of paper coating suspension and its application: 2. Influence of pigment composition, binder level, co-binder and simple electrolytes on flow properties. Polymer, 1995, 36, 4267-4274.	1.8	7
68	Bioactivity evaluation of amino acid-conjugates with protein versus cellulose based conjugates and extracted flavonoids. Journal of Drug Delivery Science and Technology, 2020, 60, 101924.	1.4	7
69	Hydroxypropylcellulose-based liquid crystal materials. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100103.	1.6	7
70	The rheological properties of paper coating suspension and its application. Part 1: the influence of solid content and ionic strength on flow properties. Pigment and Resin Technology, 1996, 25, 15-24.	0.5	6
71	Cellulose membranes for reverse osmosis part II. Improving RO membranes prepared from non-woody cellulose. Desalination, 2003, 159, 183-196.	4.0	6
72	Performance of Improved Polyvinyl alcohol as an Ageing Resistance Agent. Restaurator, 2004, 25, .	0.2	6

#	Article	IF	CITATIONS
73	Enhancing Environmental Performance of Formaldehyde-Based Adhesives in Lignocellulosic Composites. Polymer-Plastics Technology and Engineering, 2004, 43, 821-845.	1.9	6
74	Enhanced transport properties and thermal stability of agro-based RO-membrane for desalination of brackish water. Journal of Membrane Science, 2008, 310, 208-218.	4.1	6
75	Electiveness of agro-pulping process in the sustainable production of black liquor-based activated carbons. Royal Society Open Science, 2019, 6, 190173.	1.1	6
76	Effective treatment for environmental enhancing the performance of undesirable agroâ€waste in production of carbon nanostructures as adsorbent. Journal of Applied Polymer Science, 2021, 138, 50350.	1.3	6
77	Permanence of Paper 2: Correlation Between Permanence of Paper Made from Straw Pulps and Ageing Variables. Restaurator, 2000, 21, .	0.2	5
78	Novel Beater Additives for Paper. International Journal of Polymeric Materials and Polymeric Biomaterials, 2001, 50, 185-205.	1.8	5
79	Grafting of Some Carbohydrates with Multi-Group Chelating Monomer. Journal of Carbohydrate Chemistry, 1999, 18, 585-602.	0.4	4
80	LIGNOCELLULOSIC MATERIALS IN BUILDING ELEMENTS. PART IV—ECONOMICAL MANUFACTURE AND IMPROVEMENT OF PROPERTIES OF LIGHT-WEIGHT AGRO-PANELS. International Journal of Polymeric Materials and Polymeric Biomaterials, 2004, 53, 709-723.	1.8	4
81	Evaluation of palm fiber components an alternative biomass wastes for medium density fiberboard manufacturing. Maderas: Ciencia Y Tecnologia, 2018, , 0-0.	0.7	4
82	Properties of Medium-Density Fiberboards from Bagasse Digested with Different Retention Times. Forest Products Journal, 2012, 62, 400-405.	0.2	4
83	Ionic xanthate method of grafting. Part 1. Nordic Pulp and Paper Research Journal, 1991, 6, 184-190.	0.3	4
84	Spectral and Thermal Analyses of a Novel Cellulose Derivative "Propionic Acid Hydrazide-3-(OCellulose)―and its Combination with Some Metal Ions. International Journal of Polymeric Materials and Polymeric Biomaterials, 1999, 44, 1-29.	1.8	3
85	Properties of paper sheets prepared from in-situ synthesis of cuprite in wood pulp fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2002, 51, 325-349.	1.8	3
86	Lignocellulosic materials in building elements. Part III. Recycled newsprint waste paper in manufacturing lightâ€weight agroâ€gypsum panels. Pigment and Resin Technology, 2002, 31, 160-170.	0.5	3
87	Effects of denaturisation of rice bran and route of synthesis of RB-modified UF adhesive system on eco-performance of agro-based composites. Pigment and Resin Technology, 2016, 45, 172-183.	0.5	3
88	The role of fire retardant-polyvinyl alcohol systems on enhancing the performance of paper sheets toward ageing and counterfeiting. Nordic Pulp and Paper Research Journal, 2017, 32, 415-420.	0.3	3
89	Assessment of carbohydrate derivatives as synergistic with carbon materials in production environmentally friendly agro-based composites. Composites Communications, 2019, 16, 94-105.	3.3	3
90	Impact of amino acids on enhancing trimethyl chitosan as a nontoxic antiproliferative active biopolymer. Biofuels, Bioproducts and Biorefining, 2022, 16, 537-547.	1.9	3

#	Article	IF	CITATIONS
91	New Approach for Securing and Dating Valuable Printed Documents. Global Challenges, 2019, 3, 1800097.	1.8	2
92	Role of pulping process as synergistic treatment on performance of agro-based activated carbons. Royal Society Open Science, 2019, 6, 190579.	1.1	2
93	Hydroxyethyl Cellulose. I. Variables Affecting the Hydroxyethylation Reaction. Polymer-Plastics Technology and Engineering, 1993, 32, 415-430.	1.9	1
94	Comparative Study of the Kinetic Degradation of Differently Decrystallized Cotton Linters Using Nonisothermal DTA Curves. Polymer-Plastics Technology and Engineering, 1993, 32, 321-341.	1.9	1
95	Performance of glyoxal-resorcinol-based aqua gel and its activated carbon for the production of environmental-friendly bagasse composites. European Journal of Wood and Wood Products, 2019, 77, 1201-1210.	1.3	1
96	Impact of some mineral-based nanoparticles versus carbon nanoallotropes on properties of liquid crystal hydroxypropyl cellulose nanocomposite films. Pigment and Resin Technology, 2022, 51, 508-517.	0.5	1
97	Ionic Xanthate Method of Grafting. II. Polymer-Plastics Technology and Engineering, 1995, 34, 917-934.	1.9	0
98	The Role of Neutral Rosin-Alum Size in the Production of Permanent Paper. Restaurator, 2006, 27, .	0.2	0
99	<i>Sesbania aegyptiaca</i> as promising biomass for manufacturing of MDF. Wood Material Science and Engineering, 2014, 9, 49-57.	1.1	0
100	Nanotechnologies for Production of High Performance Cellulosic Paper. Advanced Structured Materials, 2015, , 137-172.	0.3	0