
Xiaofang Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079120/publications.pdf Version: 2024-02-01

XIAOFANC LIA

#	Article	IF	CITATIONS
1	Fullerphene Nanosheets: A Bottomâ€Up 2D Material for Singleâ€Carbonâ€Atomâ€Level Molecular Discrimination. Advanced Materials Interfaces, 2022, 9, .	1.9	19
2	Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nature Communications, 2022, 13, .	5.8	24
3	Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Science and Technology of Advanced Materials, 2022, 23, 393-412.	2.8	30
4	Adaptive Liquid Interfacially Assembled Protein Nanosheets for Guiding Mesenchymal Stem Cell Fate. Advanced Materials, 2020, 32, e1905942.	11.1	80
5	Methods with Nanoarchitectonics for Small Molecules and Nanostructures to Regulate Living Cells. Small Methods, 2020, 4, 2000500.	4.6	23
6	Interfacial nanoarchitectonics for responsive cellular biosystems. Materials Today Bio, 2020, 8, 100075.	2.6	13
7	Nanoarchitectonics beyond Selfâ€Assembly: Challenges to Create Bioâ€Like Hierarchic Organization. Angewandte Chemie - International Edition, 2020, 59, 15424-15446.	7.2	176
8	Nanoarchitektonik als ein Ansatz zur Erzeugung bioÃ ¤ nlicher hierarchischer Organisate. Angewandte Chemie, 2020, 132, 15550-15574.	1.6	16
9	Large-Area Aligned Fullerene Nanocrystal Scaffolds as Culture Substrates for Enhancing Mesenchymal Stem Cell Self-Renewal and Multipotency. ACS Applied Nano Materials, 2020, 3, 6497-6506.	2.4	41
10	Soft material nanoarchitectonics at interfaces: molecular assembly, nanomaterial synthesis, and life control. Molecular Systems Design and Engineering, 2019, 4, 49-64.	1.7	30
11	Materials Nanoarchitectonics as Cell Regulators. ChemNanoMat, 2019, 5, 692-702.	1.5	49
12	Modulation of Mesenchymal Stem Cells Mechanosensing at Fluid Interfaces by Tailored Selfâ€Assembled Protein Monolayers. Small, 2019, 15, e1804640.	5.2	58
13	In Situ Formation of Hierarchical Porous Fe,Coâ ̂'Nâ€Đoped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2005-2011.	1.7	8
14	Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots. Nanoscale, 2016, 8, 15152-15157.	2.8	38
15	Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosensors and Bioelectronics, 2016, 76, 80-90.	5.3	91
16	A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chemical Communications, 2016, 52, 1721-1724.	2.2	30
17	Noble-metal-free Co ₃ S ₄ –S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction. Chemical Science, 2016, 7, 4167-4173.	3.7	98
18	Stabilized, Superparamagnetic Functionalized Graphene/Fe ₃ O ₄ @Au Nanocomposites for a Magnetically-Controlled Solid-State Electrochemiluminescence Biosensing Application. Analytical Chemistry, 2015, 87, 1876-1881.	3.2	111

XIAOFANG JIA

#	Article	IF	CITATIONS
19	G-quadruplex enhanced fluorescence of DNA–silver nanoclusters and their application in bioimaging. Nanoscale, 2015, 7, 13224-13229.	2.8	57
20	Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement. Nanoscale, 2015, 7, 9421-9426.	2.8	25
21	Functionalized graphene/Fe ₃ O ₄ supported AuPt alloy as a magnetic, stable and recyclable catalyst for a catalytic reduction reaction. Journal of Materials Chemistry A, 2015, 3, 8793-8799.	5.2	40
22	Ratiometric Fluorescence Detection of Tyrosinase Activity and Dopamine Using Thiolate-Protected Gold Nanoclusters. Analytical Chemistry, 2015, 87, 4897-4902.	3.2	188
23	Controlling the synthesis and assembly of fluorescent Au/Ag alloy nanoclusters. Chemical Communications, 2015, 51, 17417-17419.	2.2	21
24	Water-dispersible near-infrared Ag ₂ S nanoclusters with tunable fluorescence for bioimaging application. RSC Advances, 2015, 5, 80929-80932.	1.7	20
25	Portable, Universal, and Visual Ion Sensing Platform Based on the Light Emitting Diode-Based Self-Referencing-Ion Selective Field-Effect Transistor. Analytical Chemistry, 2014, 86, 1380-1384.	3.2	17
26	Stable Cu nanoclusters: from an aggregation-induced emission mechanism to biosensing and catalytic applications. Chemical Communications, 2014, 50, 237-239.	2.2	308
27	Full-Featured Electrochemiluminescence Sensing Platform Based on the Multichannel Closed Bipolar System. Analytical Chemistry, 2014, 86, 5595-5599.	3.2	85
28	Supramolecular self-assembly of morphology-dependent luminescent Ag nanoclusters. Chemical Communications, 2014, 50, 9565.	2.2	61
29	Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II). Electrochemistry Communications, 2014, 42, 30-33.	2.3	56
30	A novel Au–Ag–Pt three-electrode microchip sensing platform for chromium(VI) determination. Analytica Chimica Acta, 2013, 804, 98-103.	2.6	31
31	Electrochemiluminesence of ruthenium complex and its application in biosensors. Spectroscopic Properties of Inorganic and Organometallic Compounds, 2013, , 1-27.	0.4	3
32	Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices. Nanoscale, 2013, 5, 6131.	2.8	34
33	Cu Nanoclusters with Aggregation Induced Emission Enhancement. Small, 2013, 9, 3873-3879.	5.2	343
34	Label-free G-quadruplex-specific fluorescent probe for sensitive detection of copper(II) ion. Biosensors and Bioelectronics, 2013, 39, 268-273.	5.3	70
35	DNA-Hosted Copper Nanoclusters for Fluorescent Identification of Single Nucleotide Polymorphisms. ACS Nano, 2012, 6, 3311-3317.	7.3	252
36	One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 2012, 4, 5572.	2.8	692

#	Article	IF	CITATIONS
37	Electrochemical determination of arsenic(III) on mercaptoethylamine modified Au electrode in neutral media. Analytica Chimica Acta, 2012, 733, 23-27.	2.6	66
38	Lightingâ€Up of the Dye Malachite Green with Mercury(II)–DNA and Its Application for Fluorescence Turnâ€Off Detection of Cysteine and Glutathione. Chemistry - A European Journal, 2012, 18, 13494-13500.	1.7	38
39	Highâ€Sensitivity Determination of Lead(II) and Cadmium(II) Based on the CNTsâ€PSS/Bi Composite Film Electrode. Electroanalysis, 2010, 22, 1682-1687.	1.5	53