
Chantal Abergel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8079094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metagenomic survey of the microbiome of ancient Siberian permafrost and modern Kamchatkan cryosols. MicroLife, 2022, 3, .	1.0	5
2	Giant viruses of the <i>Megavirinae</i> subfamily possess biosynthetic pathways to produce rare bacterial-like sugars in a clade-specific manner. MicroLife, 2022, 3, .	1.0	7
3	The Astounding World of Glycans from Giant Viruses. Chemical Reviews, 2022, 122, 15717-15766.	23.0	6
4	Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell, 2021, 184, 4237-4250.e19.	13.5	47
5	Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angewandte Chemie, 2021, 133, 20050-20057.	1.6	2
6	Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angewandte Chemie - International Edition, 2021, 60, 19897-19904.	7.2	11
7	Exploration of the propagation of transpovirons within Mimiviridae reveals a unique example of commensalism in the viral world. ISME Journal, 2020, 14, 727-739.	4.4	22
8	Giant viruses. Current Biology, 2020, 30, R1108-R1110.	1.8	13
9	The DNA methylation landscape of giant viruses. Nature Communications, 2020, 11, 2657.	5.8	40
10	Characterization of <i>Mollivirus kamchatka</i> , the First Modern Representative of the Proposed <i>Molliviridae</i> Family of Giant Viruses. Journal of Virology, 2020, 94, .	1.5	29
11	Pandoravirus Celtis Illustrates the Microevolution Processes at Work in the Giant Pandoraviridae Genomes. Frontiers in Microbiology, 2019, 10, 430.	1.5	34
12	A Puzzling Anomaly in the 4-Mer Composition of the Giant Pandoravirus Genomes Reveals a Stringent New Evolutionary Selection Process. Journal of Virology, 2019, 93, .	1.5	9
13	Cryo-EM structure of a Marseilleviridae virus particle reveals a large internal microassembly. Virology, 2018, 516, 239-245.	1.1	37
14	Mimiviridae: An Expanding Family of Highly Diverse Large dsDNA Viruses Infecting a Wide Phylogenetic Range of Aquatic Eukaryotes. Viruses, 2018, 10, 506.	1.5	68
15	Unexpected invasion of miniature inverted-repeat transposable elements in viral genomes. Mobile DNA, 2018, 9, 19.	1.3	20
16	Diversity and evolution of the emerging Pandoraviridae family. Nature Communications, 2018, 9, 2285.	5.8	122
17	Noumeavirus replication relies on a transient remote control of the host nucleus. Nature Communications, 2017, 8, 15087.	5.8	91
18	The rare sugar N-acetylated viosamine is a major component of Mimivirus fibers. Journal of Biological Chemistry, 2017, 292, 7385-7394	1.6	16

#	Article	IF	CITATIONS
19	Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Scientific Reports, 2017, 7, 13291.	1.6	47
20	Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser. Scientific Data, 2016, 3, 160060.	2.4	18
21	CRISPR-Cas-like system in giant viruses: why MIMIVIRE is not likely to be an adaptive immune system. Virologica Sinica, 2016, 31, 193-196.	1.2	24
22	Giant viruses: The difficult breaking of multiple epistemological barriers. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2016, 59, 89-99.	0.8	50
23	Diversité des virus géants. Virologie, 2016, 20, 61-63.	0.1	3
24	Complete Genome Sequence of a New Member of the Marseilleviridae Recovered from the Brackish Submarine Spring in the Cassis Port-Miou Calanque, France. Genome Announcements, 2015, 3, .	0.8	26
25	mRNA maturation in giant viruses: variation on a theme. Nucleic Acids Research, 2015, 43, 3776-3788.	6.5	17
26	From extraordinary endocytobionts to Pandoraviruses. Comment on Scheid et al.: Some secrets are revealed: Parasitic keratitis amoebae as vectors of the scarcely described pandoraviruses to humans. Parasitology Research, 2015, 114, 1625-1627.	0.6	7
27	Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters, 2015, 114, 098102.	2.9	284
28	The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus. FEMS Microbiology Reviews, 2015, 39, 779-796.	3.9	219
29	In-depth study of <i>Mollivirus sibericum</i> , a new 30,000-y-old giant virus infecting <i>Acanthamoeba</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5327-35.	3.3	284
30	The Megavirus Chilensis Cu,Zn-Superoxide Dismutase: the First Viral Structure of a Typical Cellular Copper Chaperone-Independent Hyperstable Dimeric Enzyme. Journal of Virology, 2015, 89, 824-832.	1.5	27
31	Genome Analysis of the First Marseilleviridae Representative from Australia Indicates that Most of Its Genes Contribute to Virus Fitness. Journal of Virology, 2014, 88, 14340-14349.	1.5	90
32	Characterization of a UDP-N-acetylglucosamine biosynthetic pathway encoded by the giant DNA virus Mimivirus. Glycobiology, 2014, 24, 51-61.	1.3	24
33	Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4274-4279.	3.3	468
34	A complement to the modern crystallographer's toolbox: caged gadolinium complexes with versatile binding modes. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1506-1516.	2.5	7
35	Giant Virus Megavirus chilensis Encodes the Biosynthetic Pathway for Uncommon Acetamido Sugars. Journal of Biological Chemistry, 2014, 289, 24428-24439.	1.6	24
36	Genome of <i>Phaeocystis globosa</i> virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10800-10805.	3.3	178

#	Article	IF	CITATIONS
37	Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science, 2013, 341, 281-286.	6.0	509
38	Preliminary crystallographic analysis of a polyadenylate synthase fromMegavirus. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 53-56.	0.7	1
39	Open Questions About Giant Viruses. Advances in Virus Research, 2013, 85, 25-56.	0.9	53
40	Molecular replacement: tricks and treats. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2167-2173.	2.5	31
41	Are viruses viruses, after all?. Virologie, 2013, 17, 217-228.	0.1	1
42	Translation in Giant Viruses: A Unique Mixture of Bacterial and Eukaryotic Termination Schemes. PLoS Genetics, 2012, 8, e1003122.	1.5	25
43	Giant DNA Virus Mimivirus Encodes Pathway for Biosynthesis of Unusual Sugar 4-Amino-4,6-dideoxy-d-glucose (Viosamine). Journal of Biological Chemistry, 2012, 287, 3009-3018.	1.6	38
44	Genomics of Megavirus and the elusive fourth domain of Life. Communicative and Integrative Biology, 2012, 5, 102-106.	0.6	83
45	Preliminary crystallographic analysis of theMegavirussuperoxide dismutase. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 1557-1559.	0.7	2
46	Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17486-17491.	3.3	306
47	Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virology Journal, 2011, 8, 99.	1.4	81
48	Unsupervised classification of single-particle X-ray diffraction snapshots by spectral clustering. Optics Express, 2011, 19, 16542.	1.7	91
49	The Conserved Candida albicans CA3427 Gene Product Defines a New Family of Proteins Exhibiting the Generic Periplasmic Binding Protein Structural Fold. PLoS ONE, 2011, 6, e18528.	1.1	1
50	Single mimivirus particles intercepted and imaged with an X-ray laser. Nature, 2011, 470, 78-81.	13.7	790
51	The mimivirus R355 gene product: preliminary crystallographic analysis of a putative ubiquitin-like protein-specific protease. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 169-172.	0.7	0
52	Preliminary crystallographic analysis of a possible transcription factor encoded by the mimivirus L544 gene. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 922-925.	0.7	1
53	Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends in Genetics, 2010, 26, 431-437.	2.9	93
54	Macromolecular crystal data phased by negative-stained electron-microscopy reconstructions. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 514-521.	2.5	11

#	Article	IF	CITATIONS
55	Identification of an <scp>l</scp> -Rhamnose Synthetic Pathway in Two Nucleocytoplasmic Large DNA Viruses. Journal of Virology, 2010, 84, 8829-8838.	1.5	53
56	mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Research, 2010, 20, 664-674.	2.4	160
57	The polyadenylation site of Mimivirus transcripts obeys a stringent â€~hairpin rule'. Genome Research, 2009, 19, 1233-1242.	2.4	69
58	Dissecting the Unique Nucleotide Specificity of Mimivirus Nucleoside Diphosphate Kinase. Journal of Virology, 2009, 83, 7142-7150.	1.5	19
59	Mimivirus and Mimiviridae: Giant viruses with an increasing number of potential hosts, including corals and sponges. Journal of Invertebrate Pathology, 2009, 101, 172-180.	1.5	109
60	Mimivirus and its Virophage. Annual Review of Genetics, 2009, 43, 49-66.	3.2	178
61	Structural characterization of CA1462, the Candida albicans thiamine pyrophosphokinase. BMC Structural Biology, 2008, 8, 33.	2.3	14
62	Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6394-6399.	3.3	76
63	Virus-Encoded Aminoacyl-tRNA Synthetases: Structural and Functional Characterization of Mimivirus TyrRS and MetRS. Journal of Virology, 2007, 81, 12406-12417.	1.5	78
64	Mimivirus and the emerging concept of "giant―virus. Virus Research, 2006, 117, 133-144.	1.1	157
65	Combining experimental data for structure determination of flexible multimeric macromolecules by molecular replacement. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 467-475.	2.5	9
66	The nucleoside diphosphate kinase from mimivirus: a peculiar affinity for deoxypyrimidine nucleotides. Journal of Bioenergetics and Biomembranes, 2006, 38, 247-254.	1.0	9
67	Mimivirus Giant Particles Incorporate a Large Fraction of Anonymous and Unique Gene Products. Journal of Virology, 2006, 80, 11678-11685.	1.5	123
68	Mimivirus TyrRS: preliminary structural and functional characterization of the first amino-acyl tRNA synthetase found in a virus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 212-215.	0.7	19
69	Acanthamoeba polyphagamimivirus NDK: preliminary crystallographic analysis of the first viral nucleoside diphosphate kinase. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 569-572.	0.7	6
70	Preliminary crystallographic analysis of theEscherichia coliYeaZ protein using the anomalous signal of a gadolinium derivative. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 848-851.	0.7	14
71	Crystal structure of Escherichia coli DkgA, a broad-specificity aldo-keto reductase. Proteins: Structure, Function and Bioinformatics, 2005, 62, 302-307.	1.5	20
72	Response to Comment on "The 1.2-Megabase Genome Sequence of Mimivirus". Science, 2005, 308, 1114b-1114b.	6.0	52

#	Article	IF	CITATIONS
73	Insight into Molecular Stability and Physiological Properties of the Diheme Cytochrome CYC41from the Acidophilic BacteriumAcidithiobacillus ferrooxidans. Biochemistry, 2005, 44, 6471-6481.	1.2	33
74	3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment. Nucleic Acids Research, 2004, 32, W37-W40.	6.5	143
75	CaspR: a web server for automated molecular replacement using homology modelling. Nucleic Acids Research, 2004, 32, W606-W609.	6.5	87
76	Spectacular improvement of X-ray diffraction through fast desiccation of protein crystals. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1413-1416.	2.5	30
77	The 1.2-Megabase Genome Sequence of Mimivirus. Science, 2004, 306, 1344-1350.	6.0	959
78	Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets. Journal of Structural and Functional Genomics, 2003, 4, 141-157.	1.2	56
79	The Structure of Acidithiobacillus ferrooxidans c4-Cytochrome. Structure, 2003, 11, 547-555.	1.6	47
80	Crystallization and preliminary crystallographic study of the peptidoglycan-associated lipoprotein fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 317-319.	2.5	19
81	Crystallization and preliminary crystallographic study of a recombinant phospholipase D from cowpea (Vigna unguiculataL. Walp). Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 320-322.	2.5	7
82	Crystallization and preliminary crystallographic study of the periplasmic domain of theEscherichia coliTolR protein. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 323-325.	2.5	2
83	Escherichia coli ykfE ORFan Gene Encodes a Potent Inhibitor of C-type Lysozyme. Journal of Biological Chemistry, 2001, 276, 18437-18441.	1.6	105
84	Crystallization and preliminary crystallographic study of an extremophile cytochromec4fromThiobacillus ferrooxidans. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1432-1433.	2.5	2
85	Crystallization and preliminary crystallographic study of b0220, an `ORFan' protein of unknown function fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1694-1695.	2.5	5
86	Crystallization and preliminary crystallographic study of HIP/PAP, a human C-lectin overexpressed in primary liver cancers. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1487-1489.	2.5	13
87	Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 Ã resolution. Structure, 1999, 7, 1291-1300.	1.6	68
88	"Hidden―dUTPase Sequence in Human Immunodeficiency Virus Type 1 gp120. Journal of Virology, 1999, 73, 751-753.	1.5	19
89	Triple association of CDC25-, Dbl- and Sec7-related domains in mammalian guanine-nucleotide-exchange factors. Trends in Biochemical Sciences, 1998, 23, 472-473.	3.7	6
90	Crystallization and preliminary crystallographic study of a component of the Escherichia coli Tol system: TolB. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 102-104.	2.5	8

#	Article	IF	CITATIONS
91	SAmBA: An interactive software for optimizing the design of biological macromolecules crystallization experiments. , 1997, 29, 252-257.		40
92	Isoform purification of gastric lipases. Journal of Molecular Biology, 1992, 225, 147-153.	2.0	39
93	Crystallization and preliminary X-ray diffraction data of the Fab fragment of a monoclonal antibody against apamin, a bee venom neurotoxin. FEBS Letters, 1991, 286, 64-66.	1.3	6
94	The effect of protein contaminants on the crystallization of turkey egg white lysozyme. Journal of Crystal Growth, 1991, 110, 11-19.	0.7	47
95	Crystallization and preliminary X-ray study of a recombinant cutinase from Fusarium solani pisi. Journal of Molecular Biology, 1990, 215, 215-216.	2.0	19
96	X-ray crystal structure determination and refinement at 1.9 Ã resolution of isolectin I from the seeds of Lathyrus ochrus. Journal of Molecular Biology, 1990, 214, 571-584.	2.0	92
97	Crystallization and preliminary X-ray study of AaH IT2, an insect-specific toxin from the scorpion Androctonus australis Hector. Journal of Molecular Biology, 1990, 214, 637-638.	2.0	3