Jifeng Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8078518/publications.pdf Version: 2024-02-01

LIFENC YUAN

#	Article	IF	CITATIONS
1	Cytotoxicity Evaluation of Oxidized Single-Walled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis. Toxicological Sciences, 2012, 126, 149-161.	3.1	128
2	Dynamic control of ERG9 expression for improved amorpha-4,11-diene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 38.	4.0	90
3	Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metabolic Engineering, 2016, 38, 303-309.	7.0	86
4	Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC–MS/MS proteome analysis. Toxicology Letters, 2011, 207, 213-221.	0.8	76
5	Combinatorial engineering of mevalonate pathway for improved amorphaâ€4,11â€diene production in budding yeast. Biotechnology and Bioengineering, 2014, 111, 608-617.	3.3	49
6	Combinatorial Assembly of Large Biochemical Pathways into Yeast Chromosomes for Improved Production of Value-added Compounds. ACS Synthetic Biology, 2015, 4, 23-31.	3.8	47
7	Metabolically engineered Saccharomyces cerevisiae for enhanced isoamyl alcohol production. Applied Microbiology and Biotechnology, 2017, 101, 465-474.	3.6	32
8	Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 107-117.	3.0	30
9	Oneâ€Pot Cascade Biotransformation for Efficient Synthesis of Benzyl Alcohol and Its Analogs. Chemistry - an Asian Journal, 2020, 15, 1018-1021.	3.3	28
10	Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production. ACS Synthetic Biology, 2021, 10, 125-131.	3.8	28
11	Enhanced bio-hydrogen production from cornstalk hydrolysate pretreated by alkaline-enzymolysis with orthogonal design method. International Journal of Hydrogen Energy, 2020, 45, 3750-3759.	7.1	21
12	One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid. Journal of Agricultural and Food Chemistry, 2021, 69, 11336-11341.	5.2	21
13	High-Yielding Protocatechuic Acid Synthesis from <scp>l</scp> -Tyrosine in <i>Escherichia coli</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 14949-14954.	6.7	18
14	Cytotoxicity of single-walled carbon nanotubes on human hepatoma HepG2 cells: An iTRAQ-coupled 2D LC–MS/MS proteome analysis. Toxicology in Vitro, 2011, 25, 1820-1827.	2.4	17
15	Metabolically engineered Saccharomyces cerevisiae for branched-chain ester productions. Journal of Biotechnology, 2016, 239, 90-97.	3.8	17
16	Engineering <i>Escherichia coli</i> for High-Yielding Hydroxytyrosol Synthesis from Biobased <scp>l</scp> -Tyrosine. Journal of Agricultural and Food Chemistry, 2020, 68, 7691-7696.	5.2	16
17	High-Yielding Terpene-Based Biofuel Production in <i>Rhodobacter capsulatus</i> . ACS Synthetic Biology, 2021, 10, 1545-1552.	3.8	15
18	Engineering a Synthetic Pathway for Tyrosol Synthesis in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 441-447.	3.8	14

JIFENG YUAN

#	Article	IF	CITATIONS
19	Renewable Vanillylamine Synthesis from Lignin-Derived Feedstocks. ACS Agricultural Science and Technology, 2021, 1, 566-571.	2.3	13
20	Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production. ACS Synthetic Biology, 2016, 5, 1404-1411.	3.8	12
21	<i>De Novo</i> Biosynthesis of (<i>S</i>)- and (<i>R</i>)-Phenylethanediol in Yeast <i>via</i> Artificial Enzyme Cascades. ACS Synthetic Biology, 2019, 8, 1801-1808.	3.8	12
22	New Set of Yeast Vectors for Shuttle Expression in <i>Escherichia coli</i> . ACS Omega, 2021, 6, 7175-7180.	3.5	12
23	Bioconversion of Lignin-Derived Feedstocks to Muconic Acid by Whole-Cell Biocatalysis. ACS Food Science & Technology, 2021, 1, 382-387.	2.7	11
24	Engineering <i>Saccharomyces cerevisiae</i> â€based biosensors for copper detection. Microbial Biotechnology, 2022, 15, 2854-2860.	4.2	11
25	Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast. Applied Microbiology and Biotechnology, 2021, 105, 2333-2340.	3.6	10
26	Efficient Synthesis of Phenylacetate and 2â€Phenylethanol by Modular Cascade Biocatalysis. ChemBioChem, 2020, 21, 2676-2679.	2.6	9
27	Characterization of Three <i>Paris polyphylla</i> Glycosyltransferases from Different UGT Families for Steroid Functionalization. ACS Synthetic Biology, 2022, 11, 1669-1680.	3.8	8
28	Photo-fermentative hydrogen production performance of a newly isolated Rubrivivax gelatinosus YP03 strain with acid tolerance. International Journal of Hydrogen Energy, 2022, 47, 20784-20792.	7.1	8
29	Oneâ€Pot Synthesis of Aromatic Amines from Renewable Feedstocks via Whole ell Biocatalysis. ChemistrySelect, 2020, 5, 14292-14295.	1.5	7
30	CRISPR/Cas12aâ€mediated genome engineering in the photosynthetic bacterium <i>Rhodobacter capsulatus</i> . Microbial Biotechnology, 2021, 14, 2700-2710.	4.2	7
31	Microbial synthesis of 4-hydroxybenzoic acid from renewable feedstocks. Food Chemistry Molecular Sciences, 2021, 3, 100059.	2.1	4
32	A Four‣tep Enzymatic Cascade for Efficient Production of Lâ€Phenylglycine from Biobased Lâ€Phenylalanine. ChemBioChem, 2022, 23, .	2.6	1