
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8078393/publications.pdf Version: 2024-02-01

ΗΙΡΟΟΗΙ ΟΝΙΟΗΙ

#	Article	IF	CITATIONS
1	Stereotactic hypofractionated high-dose irradiation for stage I nonsmall cell lung carcinoma. Cancer, 2004, 101, 1623-1631.	2.0	849
2	Direct visualization of defect-mediated dissociation of water on TiO2(110). Nature Materials, 2006, 5, 189-192.	13.3	583
3	Reconstruction of TiO2(110) surface: STM study with atomic-scale resolution. Surface Science, 1994, 313, L783-L789.	0.8	326
4	Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2:  A Time-Resolved Infrared Absorption Study. Journal of Physical Chemistry B, 2001, 105, 7258-7262.	1.2	300
5	Atom-Resolved Image of theTiO2(110)Surface by Noncontact Atomic Force Microscopy. Physical Review Letters, 1997, 79, 4202-4205.	2.9	264
6	Dynamic Visualization of a Metal-Oxide-Surface/Gas-Phase Reaction: Time-Resolved Observation by Scanning Tunneling Microscopy at 800 K. Physical Review Letters, 1996, 76, 791-794.	2.9	259
7	Adsorption of Na atoms and oxygen-containing molecules on MgO(100) and (111) surfaces. Surface Science, 1987, 191, 479-491.	0.8	256
8	Atomic-Scale Surface Structures of TiO2(110) Determined by Scanning Tunneling Microscopy: A New Surface-Limited Phase of Titanium Oxide. Bulletin of the Chemical Society of Japan, 1995, 68, 2447-2458.	2.0	209
9	Electron- and Hole-Capture Reactions on Pt/TiO2Photocatalyst Exposed to Methanol Vapor Studied with Time-Resolved Infrared Absorption Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 9122-9125.	1.2	207
10	Time-resolved infrared absorption spectroscopy of photogenerated electrons in platinized TiO2 particles. Chemical Physics Letters, 2001, 333, 271-277.	1.2	194
11	Hydrogen Adatoms onTiO2(110)â^'(1×1)Characterized by Scanning Tunneling Microscopy and Electron Stimulated Desorption. Physical Review Letters, 2000, 84, 2156-2159.	2.9	181
12	STM-imaging of formate intermediates adsorbed on a TiO2(110) surface. Chemical Physics Letters, 1994, 226, 111-114.	1.2	177
13	Adsorption of CH3OH, HCOOH and SO2 on TiO2(110) and stepped TiO2(441) surfaces. Surface Science, 1988, 193, 33-46.	0.8	164
14	Photochemical Charge Transfer and Trapping at the Interface between an Organic Adlayer and an Oxide Semiconductor. Journal of the American Chemical Society, 2003, 125, 14974-14975.	6.6	163
15	Photodynamics of NaTaO3Catalysts for Efficient Water Splitting. Journal of Physical Chemistry B, 2003, 107, 14383-14387.	1.2	147
16	Kinetics of the photocatalytic water-splitting reaction on TiO2 and Pt/TiO2 studied by time-resolved infrared absorption spectroscopy. Journal of Molecular Catalysis A, 2003, 199, 85-94.	4.8	129
17	Modification of surface electronic structure on TiO2(110) and TiO2(441) by Na deposition. Surface Science, 1988, 199, 54-66.	0.8	125
18	Photoinduced Dynamics of TiO ₂ Doped with Cr and Sb. Journal of Physical Chemistry C, 2008, 112, 1167-1173.	1.5	109

#	Article	IF	CITATIONS
19	Imaging of individual formate ions adsorbed on TiO2(110) surface by non-contact atomic force microscopy. Chemical Physics Letters, 1997, 280, 296-301.	1.2	108
20	Carrier Dynamics in TiO2and Pt/TiO2Powders Observed by Femtosecond Time-Resolved Near-Infrared Spectroscopy at a Spectral Region of 0.9â~'1.5 μm with the Direct Absorption Method. Journal of Physical Chemistry B, 2004, 108, 20233-20239.	1.2	99
21	Electron–Hole Recombination Controlled by Metal Doping Sites in NaTaO ₃ Photocatalysts. ACS Catalysis, 2015, 5, 3196-3206.	5.5	93
22	Time-Resolved Infrared Absorption Study of SrTiO ₃ Photocatalysts Codoped with Rhodium and Antimony. Journal of Physical Chemistry C, 2013, 117, 19101-19106.	1.5	91
23	Cr/Sb co-doped TiO2 from first principles calculations. Chemical Physics Letters, 2009, 469, 166-171.	1.2	87
24	Formic Acid Adsorption on Anatase TiO2(001)â^'(1 × 4) Thin Films Studied by NC-AFM and STMâ€. Journal of Physical Chemistry B, 2002, 106, 8211-8222.	1.2	86
25	Probe Microscope Observation of Platinum Atoms Deposited on the TiO2(110)-(1 × 1) Surface. Journal of Physical Chemistry B, 2006, 110, 13453-13457.	1.2	80
26	Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177, 269-275.	2.0	79
27	Effects of Water Addition on the Methanol Oxidation on Pt/TiO2Photocatalyst Studied by Time-Resolved Infrared Absorption Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 9820-9823.	1.2	77
28	Photoelectron spectroscopic study of clean and CO adsorbed NI/TiO2(110) interfaces. Surface Science, 1990, 233, 261-268.	0.8	70
29	Single-Molecule Analysis by Noncontact Atomic Force Microscopy. Journal of Physical Chemistry B, 2001, 105, 1-4.	1.2	66
30	Local Work Function of Pt Clusters Vacuum-Deposited on a TiO2Surface. Journal of Physical Chemistry B, 2006, 110, 17584-17588.	1.2	66
31	Catalytic reactions on a metal oxide single crystal: switchover of the reaction paths in formic acid decomposition on titanium dioxide TiO2(110). Journal of the American Chemical Society, 1993, 115, 10460-10461.	6.6	63
32	Water and 2-Propanol Structured on Calcite (104) Probed by Frequency-Modulation Atomic Force Microscopy. Langmuir, 2013, 29, 10744-10751.	1.6	61
33	Temperature-Jump STM Observation of Reaction Intermediate on Metalâ^'Oxide Surfaces. The Journal of Physical Chemistry, 1996, 100, 9582-9584.	2.9	58
34	STM Observation of a Ruthenium Dye Adsorbed on a TiO2(110) Surface. Journal of Physical Chemistry B, 2006, 110, 4751-4755.	1.2	57
35	Photoinduced Redox Reaction Coupled with Limited Electron Mobility at Metal Oxide Surface. Journal of Physical Chemistry B, 2004, 108, 10621-10624.	1.2	55
36	Time-Resolved Infrared Absorption Study of NaTaO ₃ Photocatalysts Doped with Alkali Earth Metals. Journal of Physical Chemistry C, 2009, 113, 13918-13923.	1.5	55

#	Article	IF	CITATIONS
37	Study of pyridine and its derivatives adsorbed on a TiO2(110)–(1×1)surface by means of STM, TDS, XPS and MD calculation in relation to surface acid[ndash]base interaction. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 161-166.	1.7	53
38	The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids. Journal of Chemical Physics, 2013, 139, 224710.	1.2	52
39	A multiplex infrared-visible sum-frequency spectrometer with wavelength tunability of the visible probe. Applied Physics Letters, 2002, 81, 1338-1340.	1.5	50
40	Observation of Anisotropic Migration of Adsorbed Organic Species Using Nanoscale Patchworks Fabricated with a Scanning Tunneling Microscope. Langmuir, 1994, 10, 4414-4416.	1.6	47
41	Time-resolved infrared absorption study of nine TiO2 photocatalysts. Chemical Physics, 2007, 339, 133-137.	0.9	47
42	Aqueous Solution Structure over α-Al ₂ O ₃ (011Ì2) Probed by Frequency-Modulation Atomic Force Microscopy. Journal of Physical Chemistry C, 2010, 114, 21423-21426.	1.5	46
43	Active structures and electronic states for adsorption of CO2 and NO on an Na/TiO2(110) surface. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 2597.	1.0	45
44	Scanning Tunneling Microscopy Study of Black Dye and Deoxycholic Acid Adsorbed on a Rutile TiO ₂ (110). Langmuir, 2008, 24, 8056-8060.	1.6	45
45	Hydration of hydrophilic thiolate monolayers visualized by atomic force microscopy. Physical Chemistry Chemical Physics, 2012, 14, 8419.	1.3	45
46	Molecularly resolved observation of anisotropic intermolecular force in a formate-ion monolayer on a TiO2 (110) surface by scanning tunneling microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 109, 335-343.	2.3	44
47	Sodium Tantalate Photocatalysts Doped with Metal Cations: Why Are They Active for Water Splitting?. ChemSusChem, 2019, 12, 1825-1834.	3.6	44
48	Cross-Sectional Structure of Liquid 1-Decanol over Graphite. Journal of Physical Chemistry C, 2012, 116, 26475-26479.	1.5	40
49	Atom-resolved observation of Na ensembles activating CO2 adsorption on a TiO2(110)-(1 � 1) surface as the genesis of basic sites. Catalysis Letters, 1996, 38, 89-94.	1.4	39
50	STM visualization of site-specific adsorption of pyridine on TiO2(110). Catalysis Letters, 1998, 50, 117-123.	1.4	38
51	Noncontact atomic force microscope topography dependent on the electrostatic dipole field of individual molecules. Physical Review B, 2001, 64, .	1.1	38
52	Photophysics and Electron Dynamics in Dye-Sensitized Semiconductor Film Studied by Time-Resolved Mid-IR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 4156-4161.	1.2	38
53	Microsecond kinetics of photocatalytic oxidation on Pt/TiO2 traced by vibrational spectroscopy. Chemical Physics Letters, 2003, 376, 576-580.	1.2	37
54	Interface-Specific Vibrational Spectroscopy of Molecules with Visible Lights. Journal of Physical Chemistry B, 2004, 108, 10636-10639.	1.2	37

#	Article	IF	CITATIONS
55	AFM Observation of Immobilized Self-Oscillating Polymer. Journal of Physical Chemistry B, 2006, 110, 5170-5173.	1.2	37
56	The selective adsorption and kinetic behaviour of molecules on TiO2(110) observed by STM and NC-AFM. Faraday Discussions, 1999, 114, 259-266.	1.6	36
57	Molecule-dependent topography determined by noncontact atomic force microscopy: carboxylates on TiO2(1 1 0). Applied Surface Science, 2002, 188, 257-264.	3.1	36
58	A needle-like organic molecule imaged by noncontact atomic force microscopy. Applied Surface Science, 2002, 188, 265-271.	3.1	36
59	Photoexcited Electrons Driven by Doping Concentration Gradient: Flux-Prepared NaTaO ₃ Photocatalysts Doped with Strontium Cations. ACS Catalysis, 2018, 8, 9334-9341.	5.5	36
60	Removal of Adsorbed Organic Molecules with Scanning Tunneling Microscope: Formate Anions on \$f TiO_{2}(110)\$ Surface. Japanese Journal of Applied Physics, 1994, 33, L1338-L1341.	0.8	35
61	Formate Adsorption on the (111) Surface of Rutile TiO2. Journal of Physical Chemistry B, 2004, 108, 13706-13710.	1.2	34
62	Cross-Sectional Imaging of Boundary Lubrication Layer Formed by Fatty Acid by Means of Frequency-Modulation Atomic Force Microscopy. Langmuir, 2017, 33, 10492-10500.	1.6	34
63	STM observation of surface reactions on a metal oxide. Surface Science, 1996, 357-358, 773-776.	0.8	33
64	Imaging of atomic-scale structure of oxide surfaces and adsorbed molecules by noncontact atomic force microscopy. Applied Surface Science, 1999, 140, 259-264.	3.1	33
65	Image topography of alkyl-substituted carboxylates observed by noncontact atomic force microscopy. Surface Science, 2001, 481, L437-L442.	0.8	32
66	Evidence for Vacancy Creation by Chromium Doping of Rutile Titanium Dioxide (110). Journal of Physical Chemistry C, 2009, 113, 3277-3280.	1.5	32
67	Effect of Annealing Temperature on Back Electron Transfer and Distribution of Deep Trap Sites in Dye-Sensitized TiO2, Studied by Time-Resolved Infrared Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 2963-2969.	1.2	30
68	Vibrationally resonant sum-frequency generation spectral shape dependent on the interval between picosecond-visible and femtosecond-infrared laser pulses. Chemical Physics Letters, 2001, 346, 413-418.	1.2	29
69	Time-Resolved Infrared Spectroscopy of K3Ta3B2O12 Photocatalysts for Water Splitting. Journal of Physical Chemistry B, 2006, 110, 7883-7886.	1.2	29
70	Local Environment of Strontium Cations Activating NaTaO ₃ Photocatalysts. ACS Catalysis, 2018, 8, 880-885.	5.5	29
71	Multiplex Infrared-Visible Sum-Frequency Spectrometer with a Phase-Conjugated Pulse Mixing Device for Narrow-Bandwidth Visible Probe Generation. Applied Spectroscopy, 2002, 56, 1298-1302.	1.2	28
72	Individual Na Adatoms on TiO2(110)-(1×1) Surface Observed Using Kelvin Probe Force Microscope. Japanese Journal of Applied Physics, 2004, 43, 4647-4650.	0.8	28

#	Article	IF	CITATIONS
73	Topography of the Rutile TiO2(110) Surface Exposed to Water and Organic Solvents. Langmuir, 2004, 20, 4782-4783.	1.6	28
74	Microscopic Identification of a Bimolecular Reaction Intermediate. Journal of Physical Chemistry B, 2002, 106, 11549-11552.	1.2	27
75	Oxygen-Atom Vacancies Imaged by a Noncontact Atomic Force Microscope Operated in an Atmospheric Pressure of N2Gas. Journal of Physical Chemistry B, 2004, 108, 15735-15737.	1.2	27
76	Fourth-Order Raman Spectroscopy of Wide-Band Gap Materials. Journal of Physical Chemistry B, 2005, 109, 8557-8561.	1.2	26
77	Two-dimensional distribution of liquid hydrocarbons facing alkanethiol monolayers visualized by frequency modulation atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 203-207.	2.3	26
78	Double Doping of NaTaO ₃ Photocatalysts with Lanthanum and Manganese for Strongly Enhanced Visible-Light Absorption. ACS Applied Energy Materials, 2019, 2, 7518-7526.	2.5	26
79	Pressure dependence of electron- and hole-consuming reactions in photocatalytic water splitting on Pt/TiO2studied by time-resolved IR absorption spectroscopy. International Journal of Photoenergy, 2003, 5, 7-9.	1.4	25
80	Fourth-order coherent Raman spectroscopy in a time domain: applications to buried interfaces. Physical Chemistry Chemical Physics, 2007, 9, 5515.	1.3	25
81	Specific Hydration on <i>p</i> -Nitroaniline Crystal Studied by Atomic Force Microscopy. Journal of Physical Chemistry C, 2013, 117, 2939-2943.	1.5	25
82	Effect of Etching on Electron–Hole Recombination in Sr-Doped NaTaO3 Photocatalysts. Journal of Physical Chemistry C, 2015, 119, 28440-28447.	1.5	25
83	Electron Population and Water Splitting Activity Controlled by Strontium Cations Doped in KTaO ₃ Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 18387-18397.	1.5	25
84	An Ordered Retinoate Monolayer Prepared on Rutile TiO2(110). Journal of Physical Chemistry B, 2004, 108, 17166-17170.	1.2	24
85	Photochemical Reaction of Trimethyl Acetate on Pt/TiO2(110). Langmuir, 2005, 21, 11802-11805.	1.6	24
86	An unusual adsorption state of hydrogen on the Pd(100)-p(2 × 2)-p4g-Al bimetallic surface. Surface Science, 1993, 283, 213-216.	0.8	23
87	Catalytic decomposition reaction of formic acid on an Ar+-bombarded TiO2(110) surface : steady-state kinetics and microscopic surface structure. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1663.	1.7	23
88	Understanding the Interface of Liquids with an Organic Crystal Surface from Atomistic Simulations and AFM Experiments. Journal of Physical Chemistry C, 2014, 118, 2058-2066.	1.5	23
89	The atomic-scale structure of LaCrO ₃ –NaTaO ₃ solid solution photocatalysts with enhanced electron population. Physical Chemistry Chemical Physics, 2019, 21, 5148-5157.	1.3	23
90	Local work function of a rutile TiO2()-(1×1) surface observed by Kelvin probe force microscopy. Surface Science, 2003, 529, L245-L250.	0.8	22

#	Article	IF	CITATIONS
91	Effects of accumulated electrons on the decay kinetics of photogenerated electrons in Pt/TiO2 photocatalyst studied by time-resolved infrared absorption spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 33-36.	2.0	22
92	Topography of anatase TiO2 film synthesized on LaAlO3(001). Nanotechnology, 2005, 16, S18-S21.	1.3	22
93	Work Function on Dye-Adsorbed TiO ₂ Surfaces Measured by Using a Kelvin Probe Force Microscope. Journal of Physical Chemistry C, 2008, 112, 6961-6967.	1.5	22
94	STM imaging of a model surface of Ru(4,4′-dicarboxy-2,2′-bipyridine)2(NCS)2 dye-sensitized TiO2 photoelectrodes. Surface Science, 2010, 604, 106-110.	0.8	22
95	Molecular conformation of n-alkyl monolayers covalently bonded to Si(1 1 1) probed by infrared–visible sum-frequency spectroscopy. Chemical Physics Letters, 2003, 367, 376-381.	1.2	20
96	The Dependence of Scanning Tunneling Microscope Topography of Carboxylates on Their Terminal Groups. Journal of Physical Chemistry B, 2003, 107, 13925-13928.	1.2	19
97	Molecular Vibrations at a Liquidâ^'Liquid Interface Observed by Fourth-Order Raman Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 9571-9578.	1.2	19
98	Intrinsic Superhydrophilicity of Titania-Terminated Surfaces. Journal of Physical Chemistry C, 2017, 121, 2268-2275.	1.5	19
99	Dopant site in indium-doped SrTiO ₃ photocatalysts. Physical Chemistry Chemical Physics, 2020, 22, 19178-19187.	1.3	19
100	Water-Splitting Activity of La-Doped NaTaO ₃ Photocatalysts Sensitive to Spatial Distribution of Dopants. Journal of Physical Chemistry C, 2020, 124, 15285-15294.	1.5	19
101	Single-Crystal Model of Highly Efficient Water-Splitting Photocatalysts: A KTaO ₃ Wafer Doped with Calcium Cations. Chemistry of Materials, 2020, 32, 1439-1447.	3.2	19
102	The condensation reaction of pyridine on TiO2(110): STM observation in the presence of the reactant atmosphere. Chemical Physics Letters, 1999, 304, 225-230.	1.2	18
103	Solution–TiO ₂ Interface Probed by Frequency-Modulation Atomic Force Microscopy. Japanese Journal of Applied Physics, 2009, 48, 08JB19.	0.8	18
104	Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy. Physical Chemistry Chemical Physics, 2016, 18, 15534-15544.	1.3	18
105	Title is missing!. Catalysis Letters, 2003, 85, 213-216.	1.4	17
106	Metal-to-Oxide Charge Transfer Observed by a Kelvin Probe Force Microscope. Catalysis Surveys From Asia, 2009, 13, 9-15.	1.0	17
107	Mercaptohexanol assembled on gold: FM-AFM imaging in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 149-154.	2.3	17
108	Transient Kinetics of O ₂ Evolution in Photocatalytic Water-Splitting Reaction. ACS Catalysis, 2020, 10, 13159-13164.	5.5	17

#	Article	IF	CITATIONS
109	Title is missing!. Catalysis Letters, 1998, 54, 177-180.	1.4	16
110	Time-Resolved Infrared Absorption Studies of Surface OH Groups on TiO2Particles Irradiated by UV Pulses. Bulletin of the Chemical Society of Japan, 2002, 75, 1019-1022.	2.0	16
111	Time-resolved Infrared Absorption Study of Photochemical Reactions Over Metal Oxides. Topics in Catalysis, 2005, 35, 211-216.	1.3	16
112	The effects of antimony doping on the surface structure of rutile TiO ₂ (110). Nanotechnology, 2009, 20, 264003.	1.3	16
113	Hydration layers at the graphite-water interface: Attraction or confinement. Physical Review B, 2019, 100, .	1.1	15
114	Visible light responsive La and Fe co-doped NaTaO3 photocatalysts: Local structure around dopants. Chemical Physics, 2020, 531, 110648.	0.9	15
115	In situ STM study of surface catalytic reactions on TiO2(110) relevant to catalyst design. Topics in Catalysis, 2000, 14, 163-172.	1.3	14
116	Scanning Tunneling Microscopy Study of Surface Reconstructions of Rutile TiO2(111). Japanese Journal of Applied Physics, 2000, 39, 3769-3772.	0.8	14
117	Observation of individual adsorbed pyridine, ammonia, and water on TiO2(110) by means of scanning tunneling microscopy. Studies in Surface Science and Catalysis, 2001, , 753-756.	1.5	14
118	Optically excited near-surface phonons of TiO2 (110) observed by fourth-order coherent Raman spectroscopy. Journal of Chemical Physics, 2009, 131, 084703.	1.2	14
119	Surface Reconstruction Induced by Transition Metal Doping of Rutile Titanium Dioxide (110). Journal of Physical Chemistry C, 2009, 113, 13199-13203.	1.5	14
120	Localization of cesium on montmorillonite surface investigated by frequency modulation atomic force microscopy. Surface Science, 2017, 665, 32-36.	0.8	14
121	Noncontact-Mode Atomic Force Microscopy Observation of α-Al2O3(0001) Surface. Japanese Journal of Applied Physics, 2000, 39, 3773-3776.	0.8	13
122	Carboxylates Adsorbed on TiO2 (110). Springer Series in Chemical Physics, 2003, , 75-89.	0.2	13
123	Acetone Adsorption on Oxidized and Reduced TiO ₂ (110): A Scanning Tunneling Microscope Study. Journal of Physical Chemistry C, 2010, 114, 14579-14582.	1.5	13
124	Kelvin Probe Force Microscopy Study of a Pt/TiO ₂ Catalyst Model Placed in an Atmospheric Pressure of N ₂ Environment. Chemistry - an Asian Journal, 2012, 7, 1251-1255.	1.7	13
125	Interface structure between tetraglyme and graphite. Journal of Chemical Physics, 2017, 147, 124701.	1.2	13
126	Na2O overlayers epitaxially prepared on Pd(100) and structure-sensitive CO2 adsorption. Surface Science, 1994, 310, 135-146.	0.8	12

#	Article	IF	CITATIONS
127	Space-Correlation Analysis of Formate Ions Adsorbed on TiO2(110). Japanese Journal of Applied Physics, 1999, 38, 3830-3832.	0.8	12
128	Adsorption of Fluorescein Isothiocyanate Isomer-I (FITC-I) Dye on TiO2(110) from an Acetone Solution. Japanese Journal of Applied Physics, 2005, 44, 5438-5442.	0.8	12
129	Low-frequency vibrations of molecular submonolayers detected by time-domain Raman spectroscopy. Journal of Molecular Structure, 2005, 735-736, 169-177.	1.8	11
130	Low-energy electron diffraction analysis of the Pd(100)-p(2 × 2)-p4g-Al surface: a buried-heteroatom structure. Surface Science, 1997, 392, L51-L55.	0.8	10
131	Time-Domain Raman Measurement of Molecular Submonolayers by Time-Resolved Reflection Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 1525-1528.	1.2	10
132	Fifth-Order Raman Spectroscopy of Excited-State Molecules. Journal of Physical Chemistry A, 2004, 108, 11165-11171.	1.1	10
133	Multiplex Sum-frequency Spectroscopy with Electronic Resonance Enhancement. Chemistry Letters, 2004, 33, 1404-1407.	0.7	10
134	Fourth-order Raman spectroscopy of adsorbed organic species on TiO2 surface. Chemical Physics Letters, 2008, 455, 343-347.	1.2	10
135	Lateral distribution of N3 dye molecules on TiO2(1 1 0) surface. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 185-190.	2.0	10
136	FM-AFM imaging of a commercial polyethylene film immersed in <i>n</i> -dodecane. Journal of Physics Condensed Matter, 2012, 24, 084011.	0.7	10
137	Sub-nanometer-resolution imaging of peptide nanotubes in water using frequency modulation atomic force microscopy. Chemical Physics, 2013, 419, 74-77.	0.9	10
138	Molecular-scale structures of the surface and hydration shell of bioinert mixed-charged self-assembled monolayers investigated by frequency modulation atomic force microscopy. RSC Advances, 2018, 8, 24660-24664.	1.7	10
139	The role of the shell in core–shell-structured La-doped NaTaO ₃ photocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 8868-8879.	1.3	10
140	Chemical Identification of Carboxylate Surfactants with One-Fluorine-Atom Sensitivity Achieved by Noncontact Atomic Force Microscopy. Langmuir, 2003, 19, 7474-7477.	1.6	9
141	Interfacial Structure of Primary and Tertiary Liquid Alcohols over Hydrophilic Thiolate Monolayers. Journal of Physical Chemistry C, 2013, 117, 5730-5735.	1.5	9
142	Artificially Designed Compositionally Graded Sr-Doped NaTaO ₃ Single-Crystalline Thin Films and the Dynamics of Their Photoexcited Electron–Hole Pairs. Chemistry of Materials, 2021, 33, 226-233.	3.2	9
143	Minitips in Frequency-Modulation Atomic Force Microscopy at Liquid–Solid Interfaces. Japanese Journal of Applied Physics, 2012, 51, 025703.	0.8	9
144	Kelvin Probe Force Microscope Observation of Chlorine-Adsorbed TiO ₂ (110) Surfaces. Japanese Journal of Applied Physics, 2008, 47, 6149.	0.8	8

#	Article	IF	CITATIONS
145	Minitips in Frequency-Modulation Atomic Force Microscopy at Liquid–Solid Interfaces. Japanese Journal of Applied Physics, 2012, 51, 025703.	0.8	8
146	Stereotactic Body Radiotherapy for Localized Ureter Transitional Cell Carcinoma: Three Case Reports. Case Reports in Urology, 2015, 2015, 1-4.	0.1	8
147	Heteroepitaxial barium-doped NaTaO 3 films on SrTiO 3 (001) substrate. Thin Solid Films, 2018, 658, 66-72.	0.8	8
148	Nanometer-Scale Distribution of a Lubricant Modifier on Iron Films: A Frequency-Modulation Atomic Force Microscopy Study Combined with a Friction Test. ACS Omega, 2019, 4, 17593-17599.	1.6	8
149	Atom-resolved AFM imaging of calcite nanoparticles in water. Chemical Physics, 2013, 419, 193-195.	0.9	7
150	True atomic-scale imaging of a spinel Li4Ti5O12(111) surface in aqueous solution by frequency-modulation atomic force microscopy. Applied Physics Letters, 2014, 105, .	1.5	7
151	Charge Carrier Dynamics in Sr-Doped NaTaO3 Photocatalysts Revealed by Deep Ultraviolet Single-Particle Microspectroscopy. Journal of Physical Chemistry C, 2019, , .	1.5	7
152	Force measurement reveals structure of a confined liquid: Observation of the impenetrable space. Surface Science, 2015, 641, 242-246.	0.8	6
153	Direct confirmation of the dopant site in indium-doped SrTiO3 photocatalyst via atomic-scale analytical transmission electron microscopy imaging. Applied Physics Letters, 2021, 118, 153901.	1.5	6
154	Non-contact atomic force microscopy using silicon cantilevers covered with organic monolayers via silicon–carbon covalent bonds. Nanotechnology, 2004, 15, S65-S68.	1.3	5
155	Time-Domain Infraredâ^'Visibleâ^'Visible Sum-Frequency Generation for Surface Vibrational Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 21467-21470.	1.5	5
156	Long-Life Electrons in Metal-Doped Alkali-Metal Tantalate Photocatalysts Excited under Water. Journal of Physical Chemistry C, O, , .	1.5	5
157	Chemical Recognition at an Atomically Flat Surface of Metal Oxide. Journal of Physical Chemistry B, 2003, 107, 9939-9942.	1.2	4
158	Surface Science Approach to Photochemistry of TiO ₂ . Solid State Phenomena, 0, 162, 115-133.	0.3	4
159	Competitive Adsorption on Graphite Investigated Using Frequency-Modulation Atomic Force Microscopy: Interfacial Liquid Structure Controlled by the Competition of Adsorbed Species. Langmuir, 2013, 29, 5801-5805.	1.6	4
160	Rate of Ag Photodeposition on Sr-doped NaTaO ₃ Photocatalysts as Controlled by Doping Sites. E-Journal of Surface Science and Nanotechnology, 2015, 13, 253-255.	0.1	4
161	Atomic-scale topography of rutile TiO2(110) in aqueous solutions: A study involving frequency-modulation atomic force microscopy. Journal of Chemical Physics, 2020, 152, 054703.	1.2	4
162	Electron- and Hole-transfer from TiO2 Particles to Adsorbates Studied by Time-Resolved Infrared Absorption Spectroscopy Hyomen Kagaku, 2003, 24, 46-52.	0.0	3

#	Article	IF	CITATIONS
163	CO2Sensing Properties of La-loaded SnO2Thin Films Prepared by Sputtering. Chemistry Letters, 2004, 33, 1080-1081.	0.7	3
164	Phonon mode of TiO2 coupled with the electron transfer from N3 dye. Journal of Chemical Physics, 2013, 138, 224704.	1.2	3
165	The structure of uniaxially stretched isotactic polypropylene sheets: Imaging with frequency-modulation atomic force microscopy. Polymer, 2016, 82, 349-355.	1.8	3
166	Enhancement of stratification of colloidal particles near a substrate induced by addition of non-adsorbing polymers. Chemical Physics Letters, 2019, 734, 136705.	1.2	3
167	Atomic Force Microscopy Imaging of Crystalline Sucrose in Alcohols. ACS Omega, 2020, 5, 2569-2574.	1.6	3
168	Microelectrode-based transient amperometry of O2 adsorption and desorption on a SrTiO3 photocatalyst excited under water. Physical Chemistry Chemical Physics, 2021, 23, 19386-19393.	1.3	3
169	Comparison of atomic force microscopy force curve and solvation structure studied by integral equation theory. Journal of Chemical Physics, 2021, 154, 164702.	1.2	3
170	Dependence of Photoexcited Electron Behavior on Octahedral Distortion in Barium-Doped NaTaO ₃ Photocatalysts. Journal of Physical Chemistry C, 2021, 125, 16403-16412.	1.5	3
171	Atomic-level nature of solid/liquid interface for energy conversion revealed by frequency modulation atomic force microscopy. Japanese Journal of Applied Physics, 2021, 60, SE0806.	0.8	3
172	Noncontact Atomic Force Microscopy and Related Topics. , 2011, , 195-237.		3
173	Adsorption and Thermal or Photodecomposition of Triethylgallium and Trimethylgallium on \$f Si(111)mbox{-}7imes 7\$. Japanese Journal of Applied Physics, 1995, 34, 4910-4916.	0.8	2
174	Fourth-Order Coherent Raman Spectroscopy of Liquid—Solid Interfaces: Near-Surface Phonons of TiO ₂ (110) in Liquids. Applied Spectroscopy, 2009, 63, 941-946.	1.2	2
175	Porphyrins on mica: Atomic force microscopy imaging in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 561, 194-200.	2.3	2
176	Structure and dynamic behaviour of atoms and molecules at catalyst model surfaces. Surface and Interface Analysis, 1999, 28, 135-141.	0.8	1
177	Noncontact Atomic Force Microscopy and Its Related Topics. , 2005, , 141-183.		1
178	Noncontact Atomic Force Microscopy and Related Topics. , 2007, , 651-678.		1
179	Single-Molecule Analysis. Nanoscience and Technology, 2002, , 215-231.	1.5	1
180	Noncontact Atomic Force Microscopy and Its Related Topics. , 2004, , 385-411.		1

#	Article	IF	CITATIONS
181	Noncontact Atomic Force Microscopy and Related Topics. , 2010, , 635-662.		1
182	27 Time-resolved infrared absorption study of electron- and hole-capture reactions on photoexcited Pt/TiO2 in the presence of methanol-water vapor mixture. Studies in Surface Science and Catalysis, 2003, 145, 157-160.	1.5	0
183	Atomic Force Microscope Topography of Nickel-Affected MoS2Model Catalysts. Japanese Journal of Applied Physics, 2005, 44, 8116-8117.	0.8	0
184	æ™,é–"å^†è§£STMã«ã,^ã,‹å›ºæ°–界é¢åå;œã®è¦³å⁻Ÿ. Electrochemistry, 2006, 74, 401-405.	0.6	0
185	Surface vibrations of TiO2 in liquids observed by fourth-order Raman spectroscopy. , 2007, , .		0
186	Black-Dye-Adsorbed TiO2(110) Electrodes Studied by Frequency-Modulation Atomic Force Microscopy. Japanese Journal of Applied Physics, 2010, 49, 08LB06.	0.8	0
187	Atomic-Scale Observation of Cations at Montmorillonite Surfaces. Hyomen Kagaku, 2015, 36, 398-402.	0.0	0
188	Noncontact atomic force and Kelvin probe force microscopy on MgO(100) and MgO(100)-supported Ba. Surface Science, 2016, 650, 76-82.	0.8	0
189	Preparation of Visible-light Responsive Rutile-TiO ₂ (110) Wafer with Well-defined Surface by Chromium and Antimony Codoping. E-Journal of Surface Science and Nanotechnology, 2019, 17, 5-9.	0.1	0
190	Preparation of the NaTaO ₃ Crystal from the KTaO ₃ Substrate via Topotactic Alkaline Cation Substitution as Confirmed by Transmission Electron Microscopy. E-Journal of Surface Science and Nanotechnology, 2020, 18, 32-37.	0.1	0
191	éžæŽ¥è§¦åŽŸåé−"力é;•å¾®éţ ãªã«ãŒã©ã"ã¾ã§è¦‹ã•ã,‹ã•? åşç€æœ‰æ©Ÿå^†åã®éžæŽ¥è§¦ź	'nžœ゚゚゚゚゚゙゙゙゙゙゚ڴŸåé-	-"力é;•å³⁄4 [©] €
192	Title is missing!. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 431-438.	0.2	0
193	Noncontact Atomic Force Microscopy and Its Related Topics. , 2004, , 385-411.		0
194	Molecular Science at Interfaces. Molecular Science, 2011, 5, A0045.	0.2	0
195	Surface Science of NaTaO3 Photocatalysts. Hyomen Kagaku, 2011, 32, 88-92.	0.0	0
196	Special Issue on Recent Developments of the Study on Catalytic Reaction Mechanisms. Atomic-Scale STM-Visualization of Dynamic Surface Processes of Metal Oxide Catalyst Hyomen Kagaku, 1996, 17, 188-193.	0.0	0
197	Realtime Scanning Probe Microscope Observation of Metal Oxide Surface and Adsorbed Molecule Shinku/Journal of the Vacuum Society of Japan, 1998, 41, 790-797.	0.2	Ο