Yoko Matsuzawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8078376/publications.pdf

Version: 2024-02-01

		687363	677142
51	617	13	22 g-index
papers	citations	h-index	g-index
51	51	51	595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dismantlable Adhesion Interface Featuring a Thermo/Photocleavable Molecular Layer. Advanced Engineering Materials, 2022, 24, 2100823.	3.5	9
2	Carbon Nanotube Liquid Crystal Dispersion for Large-Area, Micropatterned Aligned Films. ACS Applied Nano Materials, 2022, 5, 2195-2203.	5.0	7
3	Fabrication of stimulus-responsive molecular layer comprising anthracene molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126301.	4.7	7
4	Convenient preparation of stimulus-responsive molecular layers containing anthracene molecules to control surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127547.	4.7	3
5	Light-Induced Fabrication of Patterned Conductive Nanocarbon Films for Flexible Electrode. ACS Applied Nano Materials, 2020, 3, 8866-8874.	5.0	4
6	Photoplasticization Behavior and Photoinduced Pressure-Sensitive Adhesion Properties of Various Polymers Containing an Azobenzene-Doped Liquid Crystal. Bulletin of the Chemical Society of Japan, 2020, 93, 1588-1594.	3.2	7
7	CNT Ink Preparation by Combined Use of High-pressure Emulsification and a Low Molecular Weight Organic Electrolyte as a Dispersant. Chemistry Letters, 2019, 48, 674-677.	1.3	1
8	Directed Assembly of Gold Nanorods by Microwrinkles. Chemistry Letters, 2019, 48, 1292-1295.	1.3	1
9	Dual use of anionic azobenzene derivative as dispersant and dopant for carbon nanotubes for enhanced thermal stability of transparent conductive films. Carbon, 2019, 152, 247-254.	10.3	11
10	Switching the optical and electrical properties of carbon nanotube hybrid films using a photoresponsive dispersant as a dopant. RSC Advances, 2018, 8, 11186-11190.	3.6	6
11	Photofunctional Dispersants for Single-Walled Carbon Nanotubes. Oleoscience, 2018, 18, 5-10.	0.0	O
12	Formation of a Lyotropic Liquid Crystal Phase in a Single Walled Carbon Nanotube Aqueous Ink with Low-molecular-weight Electrolyte. Chemistry Letters, 2017, 46, 1186-1189.	1.3	5
13	Static Electricityâ€Responsive Supramolecular Assembly. Chemistry - A European Journal, 2017, 23, 16961-16965.	3.3	1
14	Formation of Highly Pure and Patterned Carbon Nanotube Films on a Variety of Substrates by a Wet Process Based on Light-Induced Dispersibility Switching. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30805-30811.	8.0	9
15	Photopatterned Single-Walled Carbon Nanotube Films Utilizing the Adsorption/Desorption Processes of Photofunctional Dispersants. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28400-28405.	8.0	7
16	Dispersibility Switching of Carbon Nanotubes and Carbon Black by the Photoisomerization of a Cationic Azobenzene Derivative. Chemistry Letters, 2016, 45, 1307-1309.	1.3	10
17	Effective Nondestructive Purification of Single-Walled Carbon Nanotubes Based on High-Speed Centrifugation with a Photochemically Removable Dispersant. Journal of Physical Chemistry C, 2014, 118, 5013-5019.	3.1	22
18	Effects of surfactant concentration on formation of high-aspect-ratio gold nanorods. Journal of Colloid and Interface Science, 2013, 407, 265-272.	9.4	13

#	Article	IF	CITATIONS
19	Photoinduced Dispersibility Tuning of Carbon Nanotubes by a Waterâ€Soluble Stilbene as a Dispersant. Advanced Materials, 2011, 23, 3922-3925.	21.0	32
20	Photoisomerization of Azobenzene Units Controls the Reversible Dispersion and Reorganization of Fibrous Self-Assembled Systems. Journal of Physical Chemistry B, 2010, 114, 1586-1590.	2.6	25
21	Light-driven modulation of fluorescence color from azobenzene derivatives containing electron-donating and electron-withdrawing groups. New Journal of Chemistry, 2010, 34, 2892.	2.8	20
22	Assembly and Photoinduced Organization of Mono- and Oligopeptide Molecules Containing an Azobenzene Moiety. Advanced Functional Materials, 2007, 17, 1507-1514.	14.9	50
23	Phase behavior and spherical hollow particle formation by dipeptide-based two-headed amphiphiles in a mixed solvent of dimethyl sulfoxide and water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 191-197.	4.7	6
24	Hybrid Langmuir and Langmuir–Blodgett films composed of amphiphilic cyclodextrins and hydrophobic azobenzene derivative. Thin Solid Films, 2006, 510, 292-296.	1.8	6
25	Hybrid Langmuir and LB Films Composed of Amphiphilic Cyclodextrins and Hydrophobic Azobenzene Derivatives. Molecular Crystals and Liquid Crystals, 2006, 445, 139/[429]-147/[437].	0.9	1
26	Formation of hybrid floating films composed of hydrophobic guests and amphiphilic calix[4] resorcinarenes at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 247, 47-53.	4.7	6
27	LB Monolayers Composed of Aminimide Derivatives Having Two Alkyl Chains. Wetting Properties and Alignment of Nematic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2004, 412, 181-188.	0.9	4
28	Stable spherical hollow particles composed of bola-form amides via non-covalent interactions. Journal of Materials Chemistry, 2004, 14, 3532.	6.7	9
29	Structure of Hybrid Langmuir-Blodgett Films of Amphiphilic Cyclodextrin and Water-Soluble Azobenzene. Molecular Crystals and Liquid Crystals, 2004, 425, 197-204.	0.9	8
30	Hydrophilic Interface-Directed Self-Assembly of Bola-Form Amide into Hollow Spheres. Advanced Materials, 2003, 15, 1417-1420.	21.0	11
31	Surface properties of LB monolayers composed of aminimide derivatives having two alkyl chains. Thin Solid Films, 2003, 445, 131-137.	1.8	0
32	Molecular organization of aminimides with long-alkyl chains on water surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 165-172.	4.7	3
33	Photoinduced anchoring transitions in a nematic doped with azo dyes. Liquid Crystals, 2000, 27, 1011-1016.	2.2	48
34	Effect of Conformations of Trans- and Cis-Azobenzenes on Photoinduced Anchoring Transitions in a Nematic Liquid Crystal. Japanese Journal of Applied Physics, 2000, 39, L104-L106.	1.5	25
35	Fabrication of Ultrathin Films of Liquid Crystals Assisted by (Octaalkoxyphthalocyanato)cobalt at the Air/Water Interface. Langmuir, 2000, 16, 8390-8395.	3.5	7
36	Characteristics of monolayers of calix[4]resorcinarenes derivatives having azobenzene chromophores. Materials Science and Engineering C, 1999, 8-9, 353-359.	7.3	9

3

#	Article	IF	CITATIONS
37	Hostâ \in "guest monolayers of octaalkoxyphthalocyanatocobalt with nematic liquid crystals at the airâ \in "water interface. Materials Science and Engineering C, 1999, 8-9, 47-52.	7.3	2
38	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 173-183.	1.6	8
39	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 199-210.	1.6	1
40	Preparation of soluble tetrabenzoporphyrins with substituents at the peripheral positions. Inorganica Chimica Acta, 1998, 277, 151-156.	2.4	13
41	Molecular orientation of octaalkoxyphthalocyanine derivatives in Langmuir–Blodgett films. Thin Solid Films, 1998, 327-329, 87-89.	1.8	6
42	Photoresponsive monolayers on water and solid surfaces. Supramolecular Science, 1998, 5, 373-377.	0.7	7
43	Macrocyclic amphiphiles. Part 2.â€â€"Multi-point adsorptivity of the crown conformer of calix[4]resorcinarenes and their derivatives on surfaces of amorphous polar substrates. Journal of Materials Chemistry, 1998, 8, 397-403.	6.7	30
44	Macrocyclic Amphiphiles. 3.â€Monolayers of O-Octacarboxymethoxylated Calix[4] resorcinarenes with Azobenzene Residues Exhibiting Efficient Photoisomerizability. Langmuir, 1998, 14, 4495-4502.	3.5	36
45	Hostâ°'Guest Monolayers of Metal Complexes of Octaalkoxyphthalocyanines with Long-Chain Normal Alkanes on a Water Surface. Langmuir, 1998, 14, 683-689.	3.5	22
46	Hostâ^'Guest Monolayers of Cobalt Complex of Octaalkoxyphthalocyanines with Nematic Liquid Crystals. Langmuir, 1998, 14, 4891-4897.	3.5	12
47	Floating Mixed Monolayers of Octaalkoxymetallophthalocyanines with Liquid Crystalline Azobenzenes. Chemistry Letters, 1998, 27, 341-342.	1.3	3
48	Mixed Monolayers of a Calix[4]resorcinarene with a Nematic Liquid Crystal and Their Bilayered Structuring. Chemistry Letters, 1998, 27, 411-412.	1.3	8
49	Monolayers of Calix[4]resorcinarenes with Azobenzene Residues Exhibiting Efficient Photoisomerizability. Chemistry Letters, 1998, 27, 165-166.	1.3	14
50	Macrocyclic Amphiphiles. 1. Properties of Calix[4]resorcinarene Derivatives Substituted with Azobenzenes in Solutions and Monolayers. Langmuir, 1997, 13, 6780-6786.	3.5	32
51	Spontaneous aggregation of octaalkoxyphthalocyanine metal complexes at an air–water interface. Thin Solid Films, 1997, 301, 162-168.	1.8	30