Dan Ding

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8078270/dan-ding-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 12,598 59 200 h-index g-index citations papers 6.99 11.5 219 15,342 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
200	Wearable AIEgen-Based Lateral Flow Test Strip for Rapid Detection of SARS-CoV-2 RBD Protein and N Protein <i>Cell Reports Physical Science</i> , 2022 , 3, 100740	6.1	O
199	Amplification of Activated Near-Infrared Afterglow Luminescence by Introducing Twisted Molecular Geometry for Understanding Neutrophil-Involved Diseases <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	12
198	Portable and visual assays for the detection of SARS-CoV-2. <i>View</i> , 2022 , 3, 20200138	7.8	2
197	Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging <i>Nature Communications</i> , 2022 , 13, 186	17.4	21
196	Strategies in boosting photosensitization for biomedical applications. <i>Science China Chemistry</i> , 2022 , 65, 647	7.9	5
195	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motion-Induced Photo-Hyperthermia for Cancer Therapy <i>Advanced Science</i> , 2022 , e2104885	13.6	4
194	Semiconducting Polymer Nanoparticles with Intramolecular Motion-Induced Photothermy for Tumor Phototheranostics and Tooth Root Canal Therapy <i>Advanced Materials</i> , 2022 , e2200179	24	4
193	In Vivo Phototheranostics Application of AIEgen-based Probes 2022 , 447-464		Ο
192	AIE bio-conjugates for biomedical applications 2022 , 529-553		O
191	Killing three birds with one stone: Near-infrared light triggered nitric oxide release for enhanced photodynamic and anti-inflammatory therapy in refractory keratitis. <i>Biomaterials</i> , 2022 , 286, 121577	15.6	4
190	Targeted regulation of tumor microenvironment through the inhibition of MDSCs by curcumin loaded self-assembled nano-filaments. <i>Materials Today Bio</i> , 2022 , 100304	9.9	O
189	Highly Bright AIE Nanoparticles by Regulating the Substituent of Rhodanine for Precise Early Detection of Atherosclerosis and Drug Screening <i>Advanced Materials</i> , 2021 , e2106994	24	5
188	Large Eextended donor-acceptor polymers for highly efficient in vivo near-infrared photoacoustic imaging and photothermal tumor therapy. <i>Science China Chemistry</i> , 2021 , 64, 2180	7.9	5
187	Aggregation-induced emission luminogens for image-guided surgery in non-human primates. <i>Nature Communications</i> , 2021 , 12, 6485	17.4	6
186	Targeted Enrichment of Enzyme-Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26994	16.4	12
185	Aggregation-Induced Emission-Based Vaccine Improves Potential Antitumor Immunotherapy. Journal of Biomedical Nanotechnology, 2021 , 17, 2053-2061	4	
184	Aggregation-induced emission (AIE)-guided dynamic assembly for disease imaging and therapy. <i>Advanced Drug Delivery Reviews</i> , 2021 , 179, 114028	18.5	5

(2021-2021)

183	Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. <i>Advanced Materials</i> , 2021 , 33, e2008518	24	18
182	High Performance of Simple Organic Phosphorescence Host-Guest Materials and their Application in Time-Resolved Bioimaging. <i>Advanced Materials</i> , 2021 , 33, e2007811	24	82
181	A Systematic Strategy of Combinational Blow for Overcoming Cascade Drug Resistance via NIR-Light-Triggered Hyperthermia. <i>Advanced Materials</i> , 2021 , 33, e2100599	24	27
180	J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. <i>Nature Communications</i> , 2021 , 12, 2376	17.4	37
179	Organic optical agents for image-guided combined cancer therapy. <i>Biomedical Materials (Bristol)</i> , 2021 , 16,	3.5	1
178	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infrared-II Fluorescence Imaging and Near Infrared-I Photothermal Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2102213	15.6	16
177	Room Temperature Phosphorescence: Boosting Room Temperature Phosphorescence Performance by Alkyl Modification for Intravital Orthotopic Lung Tumor Imaging (Small 22/2021). Small, 2021, 17, 2170105	11	
176	Surfactant-Stripped Micelles with Aggregation-Induced Enhanced Emission for Bimodal Gut Imaging In Vivo and Microbiota Tagging Ex Vivo. <i>Advanced Healthcare Materials</i> , 2021 , e2100356	10.1	4
175	Building-block crosslinking micelles for enhancing cellular transfection of biocompatible polycations. <i>Science China Materials</i> , 2021 , 64, 241-251	7.1	7
174	A peptide-based aggregation-induced emission bioprobe for selective detection and photodynamic killing of Gram-negative bacteria. <i>Biomaterials Science</i> , 2021 , 9, 437-442	7.4	13
173	Root Canal Disinfection Using Highly Effective Aggregation-Induced Emission Photosensitizer <i>ACS Applied Bio Materials</i> , 2021 , 4, 3796-3804	4.1	5
172	Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001550	10.1	18
171	Recent Progress in Boosted PDT Induced Immunogenic Cell Death for Tumor Immunotherapy. Chemical Research in Chinese Universities, 2021, 37, 83-89	2.2	5
170	A dentin hypersensitivity treatment using highly stable photothermal conversion nanoparticles. Materials Chemistry Frontiers, 2021 , 5, 3388-3395	7.8	2
169	Gathering brings strength: How organic aggregates boost disease phototheranostics. <i>Aggregate</i> , 2021 , 2, 95-113	22.9	58
168	Boosting Room Temperature Phosphorescence Performance by Alkyl Modification for Intravital Orthotopic Lung Tumor Imaging. <i>Small</i> , 2021 , 17, e2005449	11	14
167	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. <i>Nature Communications</i> , 2021 , 12, 960	17.4	19
166	HCPT-peptide prodrug with tumor microenvironment -responsive morphology transformable characteristic for boosted bladder tumor chemotherapy. <i>Journal of Controlled Release</i> , 2021 , 330, 715-72	15.7	5

165	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21047-21055	16.4	7
164	Boosting Photoacoustic Effect via Intramolecular Motions Amplifying Thermal-to-Acoustic Conversion Efficiency for Adaptive Image-Guided Cancer Surgery. <i>Angewandte Chemie</i> , 2021 , 133, 2121	5 ² 2122	23 ¹
163	Boosting Photothermal Theranostics via TICT and Molecular Motions for Photohyperthermia Therapy of Muscle-Invasive Bladder Cancer. <i>Advanced Healthcare Materials</i> , 2021 , e2101063	10.1	3
162	Sensitive and specific detection of peroxynitrite and in vivo imaging of inflammation by a limple AIE bioprobe. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1830-1835	7.8	6
161	High Performance Aggregation-Induced Emission Nanoprobes for Image-Guided Cancer Surgery. <i>Acta Chimica Sinica</i> , 2021 , 79, 319	3.3	4
160	Enabling AIEgens close assembly in tumor-overexpressed protein cluster for boosted image-guided cancer surgery. <i>Science China Chemistry</i> , 2020 , 63, 1694-1702	7.9	7
159	Polymerization-induced photothermy: A non-donor-acceptor approach to highly effective near-infrared photothermal conversion nanoparticles. <i>Biomaterials</i> , 2020 , 255, 120179	15.6	12
158	Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. <i>ACS Nano</i> , 2020 , 14, 4265-4275	16.7	28
157	Tracking of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improving Mitochondrial Function in Renal Ischemia-Reperfusion Injury. <i>ACS Nano</i> , 2020 , 14, 4014-4026	16.7	50
156	AlEgens Conjugation Improves the Photothermal Efficacy and Near-Infrared Imaging of Heptamethine Cyanine IR-780. ACS Applied Materials & Interfaces, 2020, 12, 16114-16124	9.5	26
155	Egalactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells. <i>Science China Chemistry</i> , 2020 , 63, 398-403	7.9	19
154	Intramolecular motion-associated biomaterials for image-guided cancer surgery. <i>Smart Materials in Medicine</i> , 2020 , 1, 24-31	12.9	1
153	Heat inactivation of serum interferes with the immunoanalysis of antibodies to SARS-CoV-2. <i>Journal of Clinical Laboratory Analysis</i> , 2020 , 34, e23411	3	30
152	Application of Biopsy Samples Used for Urease Test to Predict Epstein-Barr Virus-Associated Cancer. <i>Microorganisms</i> , 2020 , 8,	4.9	1
151	Novel "Carrier-Free" Nanofiber Codelivery Systems with the Synergistic Antitumor Effect of Paclitaxel and Tetrandrine through the Enhancement of Mitochondrial Apoptosis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 10096-10106	9.5	13
150	9,9-Dimethylxanthene Derivatives with Room-Temperature Phosphorescence: Substituent Effects and Emissive Properties. <i>Angewandte Chemie</i> , 2020 , 132, 10032-10037	3.6	17
149	Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10008-10012	16.4	144
148	Calixarene-Based Supramolecular AIE Dots with Highly Inhibited Nonradiative Decay and Intersystem Crossing for Ultrasensitive Fluorescence Image-Guided Cancer Surgery. <i>Angewandte Chemie</i> , 2020 , 132, 10094-10098	3.6	11

(2019-2020)

147	9,9-Dimethylxanthene Derivatives with Room-Temperature Phosphorescence: Substituent Effects and Emissive Properties. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9946-9951	16.4	49
146	Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. <i>Biomaterials</i> , 2020 , 248, 120036	15.6	46
145	Ultrastable and colorful afterglow from organic luminophores in amorphous nanocomposites: advanced anti-counterfeiting and in vivo imaging application. <i>Nano Research</i> , 2020 , 13, 1035-1043	10	15
144	Clearable Black Phosphorus Nanoconjugate for Targeted Cancer Phototheranostics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18342-18351	9.5	34
143	Reperfusion combined with intraarterial administration of resveratrol-loaded nanoparticles improved cerebral ischemia-reperfusion injury in rats. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 28, 102208	6	16
142	Supramolecular Aggregation-Induced Emission Nanodots with Programmed Tumor Microenvironment Responsiveness for Image-Guided Orthotopic Pancreatic Cancer Therapy. <i>ACS Nano</i> , 2020 , 14, 5121-5134	16.7	57
141	Constitutional Isomerization Enables Bright NIR-II AlEgen for Brain-Inflammation Imaging. <i>Advanced Functional Materials</i> , 2020 , 30, 1908125	15.6	109
140	Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. <i>Biomaterials</i> , 2020 , 230, 119635	15.6	41
139	imaging/detection of MRSA bacterial infections in mice using fluorescence labelled polymeric nanoparticles carrying vancomycin as the targeting agent. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2020 , 31, 293-309	3.5	10
138	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15146-15156	16.4	76
137	Tocilizumab-Conjugated Polymer Nanoparticles for NIR-II Photoacoustic-Imaging-Guided Therapy of Rheumatoid Arthritis. <i>Advanced Materials</i> , 2020 , 32, e2003399	24	40
136	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. <i>Chemical Science</i> , 2020 , 11, 8438-8447	9.4	18
135	Design of superior phototheranostic agents guided by Jablonski diagrams. <i>Chemical Society Reviews</i> , 2020 , 49, 8179-8234	58.5	145
134	Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. <i>Science China Chemistry</i> , 2020 , 63, 1428-1434	7.9	38
133	Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AIEgen and Calixarene. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15966-15974	16.4	46
132	Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. <i>Advanced Materials</i> , 2020 , 32, e1806331	24	176
131	Superior antitumor effect of self-assembly supramolecular paclitaxel nanoparticles <i>RSC Advances</i> , 2020 , 10, 12999-13005	3.7	5
130	Triggered ferroptotic polymer micelles for reversing multidrug resistance to chemotherapy. <i>Biomaterials</i> , 2019 , 223, 119486	15.6	68

129	Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. <i>CheM</i> , 2019 , 5, 2657-2677	16.2	62
128	A Noncovalent Fluorescence Turn-on Strategy for Hypoxia Imaging. <i>Angewandte Chemie</i> , 2019 , 131, 23	9 9. 2 40	317
127	A Noncovalent Fluorescence Turn-on Strategy for Hypoxia Imaging. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2377-2381	16.4	69
126	An miRNA Delivery System for Restoring Infarcted Myocardium. <i>ACS Nano</i> , 2019 , 13, 9880-9894	16.7	62
125	A Dual-Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. <i>Advanced Functional Materials</i> , 2019 , 29, 1902673	15.6	58
124	Manipulating the intramolecular motion of AIEgens for boosted biomedical applications. <i>Science China Chemistry</i> , 2019 , 62, 929-932	7.9	22
123	A fluorescence and photoactivity dual-activatable prodrug with self-synergistic magnification of the anticancer effect. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1349-1356	7.8	15
122	Photostable pH-Sensitive Near-Infrared Aggregation-Induced Emission Luminogen for Long-Term Mitochondrial Tracking. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 13134-13139	9.5	31
121	In Vivo Real-Time Imaging of Extracellular Vesicles in Liver Regeneration via Aggregation-Induced Emission Luminogens. <i>ACS Nano</i> , 2019 , 13, 3522-3533	16.7	44
120	Achieving Persistent, Efficient, and Robust Room-Temperature Phosphorescence from Pure Organics for Versatile Applications. <i>Advanced Materials</i> , 2019 , 31, e1807222	24	175
119	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019 , 141, 5359-5368	16.4	276
118	The oddBven effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding in vivo imaging. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1391-1397	7.8	50
117	Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. <i>Science China Materials</i> , 2019 , 62, 1740-1758	7.1	27
116	Hydrogen bonding boosted the persistent room temperature phosphorescence of pure organic compounds for multiple applications. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9095-9101	7.1	25
115	Proline Isomerization-Regulated Tumor Microenvironment-Adaptable Self-Assembly of Peptides for Enhanced Therapeutic Efficacy. <i>Nano Letters</i> , 2019 , 19, 7965-7976	11.5	41
114	Surface-adaptive nanoparticles with near-infrared aggregation-induced emission for image-guided tumor resection. <i>Science China Life Sciences</i> , 2019 , 62, 1472-1480	8.5	4
113	Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. <i>Advanced Materials</i> , 2019 , 31, e1904914	24	215
112	Aggregation-Induced Emission Luminogens for Biomedical Applications 2019 , 457-478		3

(2018-2019)

111	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. <i>Nature Communications</i> , 2019 , 10, 768	17.4	184
110	Cancer Immunotherapy: Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure (Adv. Mater. 52/2019). <i>Advanced Materials</i> , 2019 , 31, 1970372	24	6
109	Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. <i>Nano Letters</i> , 2019 , 19, 318-33	0 ^{11.5}	295
108	Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots. <i>Biomaterials</i> , 2019 , 188, 107-117	15.6	15
107	Far-Red/Near-Infrared Emissive (1,3-Dimethyl)barbituric Acid-Based AIEgens for High-Contrast Detection of Metastatic Tumors in the Lung. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 871-876	4.5	11
106	Metal-Organic-Framework-Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. <i>Advanced Materials</i> , 2018 , 30, e1706831	24	172
105	Conjugated Polymers for In Vivo Fluorescence Imaging 2018 , 87-109		2
104	Supramolecular Nanofibers of Curcumin for Highly Amplified Radiosensitization of Colorectal Cancers to Ionizing Radiation. <i>Advanced Functional Materials</i> , 2018 , 28, 1707140	15.6	44
103	Composite Hydrogel Modified by IGF-1C Domain Improves Stem Cell Therapy for Limb Ischemia. <i>ACS Applied Materials & Domain Improves Stem Cell Therapy for Limb Ischemia.</i>	9.5	25
102	Antibacterial Therapy: Metal©rganic-Framework-Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy (Adv. Mater. 18/2018). <i>Advanced Materials</i> , 2018 , 30, 1870124	24	3
101	Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 17117-17128	9.5	59
100	Biomarker Displacement Activation: A General Host-Guest Strategy for Targeted Phototheranostics in Vivo. <i>Journal of the American Chemical Society</i> , 2018 , 140, 4945-4953	16.4	150
99	Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. <i>Advanced Biology</i> , 2018 , 2, 1800074	3.5	97
98	Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800477	10.1	107
97	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. <i>Nature Communications</i> , 2018 , 9, 1848	17.4	216
96	Alleviating the Liver Toxicity of Chemotherapy via pH-Responsive Hepatoprotective Prodrug Micelles. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	33
95	Supramolecular Nanofibers of Curcumin for Highly Amplified Radiosensitization of Colorectal Cancers to Ionizing Radiation. <i>Proceedings for Annual Meeting of the Japanese Pharmacological Society</i> , 2018 , WCP2018, PO2-10-7	О	
94	Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles. <i>Advanced Functional Materials</i> , 2018 , 28, 170493	9 ^{15.6}	51

93	Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2566-2573	7.3	26
92	Corannulene-Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. <i>Advanced Materials</i> , 2018 , 30, e1801065	24	120
91	Aggregation-induced emission luminogen-assisted stimulated emission depletion nanoscopy for super-resolution mitochondrial visualization in live cells. <i>Nano Research</i> , 2018 , 11, 6023-6033	10	26
90	Tunable Aggregation-Induced Emission of Tetraphenylethylene via Short Peptide-Directed Self-Assembly. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600183	4.6	14
89	Polymer Nanoparticles: Multifunctional Conjugated Polymer Nanoparticles for Image-Guided Photodynamic and Photothermal Therapy (Small 3/2017). <i>Small</i> , 2017 , 13,	11	2
88	Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2356-2360	16.4	67
87	Dual Fluorescent- and Isotopic-Labelled Self-Assembling Vancomycin for in vivo Imaging of Bacterial Infections. <i>Angewandte Chemie</i> , 2017 , 129, 2396-2400	3.6	10
86	Spatiotemporal Control of Supramolecular Self-Assembly and Function. <i>ACS Applied Materials</i> & Samp; Interfaces, 2017 , 9, 10012-10018	9.5	42
85	Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. <i>Chemical Science</i> , 2017 , 8, 2782-2789	9.4	131
84	Ternary Chalcogenide Nanosheets with Ultrahigh Photothermal Conversion Efficiency for Photoacoustic Theranostics. <i>Small</i> , 2017 , 13, 1604139	11	63
83	Mitochondrion-Anchoring Photosensitizer with Aggregation-Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. <i>Advanced Materials</i> , 2017 , 29, 1606167	24	173
82	Controlled Fabrication of Functional Capsules Based on the Synergistic Interaction between Polyphenols and MOFs under Weak Basic Condition. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2017 , 9, 14258-14264	9.5	26
81	Radiosensitizers: Mitochondrion-Anchoring Photosensitizer with Aggregation-Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation (Adv. Mater. 15/2017). Advanced Materials, 2017, 29,	24	1
80	In vivo cancer research using aggregation-induced emission organic nanoparticles. <i>Drug Discovery Today</i> , 2017 , 22, 1412-1420	8.8	21
79	Superior antitumor effect of extremely high drug loading self-assembled paclitaxel nanofibers. <i>International Journal of Pharmaceutics</i> , 2017 , 526, 217-224	6.5	23
78	AIEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. <i>Chemical Science</i> , 2017 , 8, 2191-2198	9.4	91
77	Singlet oxygen-responsive micelles for enhanced photodynamic therapy. <i>Journal of Controlled Release</i> , 2017 , 260, 12-21	11.7	72
76	A specific environment-sensitive near-infrared fluorescent turn-on probe for synergistic enhancement of anticancer activity of a chemo-drug. <i>Biomaterials Science</i> , 2017 , 5, 1622-1628	7.4	5

(2016-2017)

75	Controlled ROS production by corannulene: the vehicle makes a difference. <i>Biomaterials Science</i> , 2017 , 5, 1236-1240	7.4	9
74	Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 4918-4925	7.3	15
73	Bioinspired Coordination Micelles Integrating High Stability, Triggered Cargo Release, and Magnetic Resonance Imaging. <i>ACS Applied Materials & District Resonance Imaging.</i> ACS Applied Materials & District Resonance Imaging. ACS Applied Materials & District Resonance Imaging. ACS Applied Materials & District Resonance Imaging.	9.5	43
72	Chemiluminescence-Guided Cancer Therapy Using a Chemiexcited Photosensitizer. <i>CheM</i> , 2017 , 3, 991-	100.7	169
71	Direct visualization and real-time monitoring of dissipative self-assembly by synchronously coupled aggregation-induced emission. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2651-2655	7.8	12
70	Amphiphilic semiconducting polymer as multifunctional nanocarrier for fluorescence/photoacoustic imaging guided chemo-photothermal therapy. <i>Biomaterials</i> , 2017 , 145, 168	3-1 5 9	135
69	Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. <i>ACS Nano</i> , 2017 , 11, 8998-9009	16.7	199
68	High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. <i>Materials Horizons</i> , 2017 , 4, 1110-1114	14.4	96
67	Multicolor Photo-Crosslinkable AIEgens toward Compact Nanodots for Subcellular Imaging and STED Nanoscopy. <i>Small</i> , 2017 , 13, 1702128	11	44
66	A Highly Efficient and Photostable Photosensitizer with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Anticancer Therapy. <i>Advanced Materials</i> , 2017 , 29, 1700548	24	280
65	Amplification of near-infrared fluorescence in semiconducting polymer nanoprobe for grasping the behaviors of systemically administered endothelial cells in ischemia treatment. <i>Biomaterials</i> , 2017 , 143, 109-119	15.6	14
64	Ratiometric co-delivery of multiple chemodrugs in a single nanocarrier. <i>European Journal of Pharmaceutical Sciences</i> , 2017 , 107, 16-23	5.1	23
63	Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice. <i>ACS Nano</i> , 2017 , 11, 7177-7188	16.7	173
62	Multifunctional Conjugated Polymer Nanoparticles for Image-Guided Photodynamic and Photothermal Therapy. <i>Small</i> , 2017 , 13, 1602807	11	122
61	AIEgen based light-up probes for live cell imaging. Science China Chemistry, 2016, 59, 53-61	7.9	43
60	Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein. <i>Scientific Reports</i> , 2016 , 6, 23190	4.9	21
59	Photoacoustic Imaging: Semiconducting Oligomer Nanoparticles as an Activatable Photoacoustic Probe with Amplified Brightness for In Vivo Imaging of pH (Adv. Mater. 19/2016). <i>Advanced Materials</i> , 2016 , 28, 3606	24	11
58	Semiconducting Oligomer Nanoparticles as an Activatable Photoacoustic Probe with Amplified Brightness for In Vivo Imaging of pH. <i>Advanced Materials</i> , 2016 , 28, 3662-8	24	219

57	Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. <i>ACS Nano</i> , 2016 , 10, 4472-8	1 ^{16.7}	389
56	Peptide-Induced AIEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. <i>Analytical Chemistry</i> , 2016 , 88, 3872-8	7.8	81
55	Activatable Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristics for Selective In Vivo Imaging of Elevated Peroxynitrite Generation. <i>Advanced Materials</i> , 2016 , 28, 7249-56	24	151
54	Surface-Induced Hydrogelation for Fluorescence and Naked-Eye Detections of Enzyme Activity in Blood. <i>Analytical Chemistry</i> , 2016 , 88, 7318-23	7.8	24
53	Enzymatic induction of supramolecular order and bioactivity. <i>Nanoscale</i> , 2016 , 8, 10768-73	7.7	14
52	Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. <i>Chemical Science</i> , 2016 , 7, 5118-5125	9.4	97
51	Nanospheres of doxorubicin as cross-linkers for a supramolecular hydrogelation. <i>Scientific Reports</i> , 2015 , 5, 8764	4.9	16
50	Drug delivery with nanospherical supramolecular cell penetrating peptide-taxol conjugates containing a high drug loading. <i>Journal of Colloid and Interface Science</i> , 2015 , 453, 15-20	9.3	44
49	A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. <i>Materials Horizons</i> , 2015 , 2, 100-105	14.4	60
48	Regenerative Medicine: Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration (Adv. Funct. Mater. 27/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 4262-4262	15.6	
47	Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. <i>Scientific Reports</i> , 2015 , 5, 16680	4.9	27
46	Conjugated Polymer Nanodots as Ultrastable Long-Term Trackers to Understand Mesenchymal Stem Cell Therapy in Skin Regeneration. <i>Advanced Functional Materials</i> , 2015 , 25, 4263-4273	15.6	43
45	When Molecular Probes Meet Self-Assembly: An Enhanced Quenching Effect. <i>Angewandte Chemie</i> , 2015 , 127, 4905-4909	3.6	8
44	Nanostructure formation-induced fluorescence turn-on for selectively detecting protein thiols in solutions, bacteria and live cells. <i>Chemical Communications</i> , 2015 , 51, 10758-61	5.8	11
43	Zoledronic acid prevents the tumor-promoting effects of mesenchymal stem cells via MCP-1 dependent recruitment of macrophages. <i>Oncotarget</i> , 2015 , 6, 26018-28	3.3	25
42	Light-up bioprobe with aggregation-induced emission characteristics for real-time apoptosis imaging in target cancer cells. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 231-238	7.3	59
41	Reduction-triggered formation of EFK8 molecular hydrogel for 3D cell culture. <i>RSC Advances</i> , 2014 , 4, 30168	3.7	10
40	Self-assembly-induced far-red/near-infrared fluorescence light-up for detecting and visualizing specific protein-Peptide interactions. <i>ACS Nano</i> , 2014 , 8, 1475-84	16.7	76

39	Self-assembling choline mimicks with enhanced binding affinities to C-LytA protein. <i>Scientific Reports</i> , 2014 , 4, 6621	4.9	2
38	Drug Delivery from Protein-Based Nanoparticles 2014 , 149-170		1
37	Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide. <i>Materials Science and Engineering C</i> , 2014 , 45, 491-6	8.3	20
36	Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots. <i>ACS Nano</i> , 2014 , 8, 12620-31	16.7	124
35	Bright single-chain conjugated polymer dots embedded nanoparticles for long-term cell tracing and imaging. <i>Small</i> , 2014 , 10, 1212-9	11	47
34	Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. <i>Advanced Materials</i> , 2013 , 25, 6083-8	24	218
33	Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging. <i>Science China Chemistry</i> , 2013 , 56, 1228-1233	7.9	28
32	Fluorescent light-up probe with aggregation-induced emission characteristics for in vivo imaging of cell apoptosis. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 7289-96	3.9	52
31	Bright far-red/near-infrared fluorescent conjugated polymer nanoparticles for targeted imaging of HER2-positive cancer cells. <i>Polymer Chemistry</i> , 2013 , 4, 4326	4.9	48
30	Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. <i>Small</i> , 2013 , 9, 3093-102	11	95
29	Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. <i>Scientific Reports</i> , 2013 , 3, 1150	4.9	290
28	Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. <i>Advanced Healthcare Materials</i> , 2013 , 2, 500-7	10.1	105
27	Bioprobes based on AIE fluorogens. Accounts of Chemical Research, 2013, 46, 2441-53	24.3	1406
26	Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy. <i>Nanoscale</i> , 2013 , 5, 9902-7	7.7	27
25	Organic Dots with Aggregation-Induced Emission (AIE Dots) Characteristics for Dual-Color Cell Tracing. <i>Chemistry of Materials</i> , 2013 , 25, 4181-4187	9.6	108
24	Imaging: Conjugated Polymer Amplified Far-Red/Near-Infrared Fluorescence from Nanoparticles with Aggregation-Induced Emission Characteristics for Targeted In Vivo Imaging (Adv. Healthcare Mater. 3/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 382-382	10.1	3
23	Fluorescence Imaging: Bright Far-Red/Near-Infrared Conjugated Polymer Nanoparticles for In Vivo Bioimaging (Small 18/2013). <i>Small</i> , 2013 , 9, 3092-3092	11	5
22	Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. <i>Advanced Functional Materials</i> , 2012 , 22, 771-779	15.6	545

21	Tumor accumulation, penetration, and antitumor response of cisplatin-loaded gelatin/poly(acrylic acid) nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 1838-46	9.5	48
20	PEGylated conjugated polyelectrolytes containing 2,1,3-benzoxadiazole units for targeted cell imaging. <i>Polymer Chemistry</i> , 2012 , 3, 1567	4.9	54
19	Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. <i>Journal of Materials Chemistry</i> , 2012 , 22, 15128		156
18	Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. <i>Small</i> , 2012 , 8, 3655-63	11	128
17	Hyperbranched conjugated polyelectrolyte for dual-modality fluorescence and magnetic resonance cancer imaging. <i>Small</i> , 2012 , 8, 3523-30	11	40
16	Pyrene-based water dispersible orange emitter for one- and two-photon fluorescence cellular imaging. <i>Polymer Chemistry</i> , 2012 , 3, 2464	4.9	11
15	Fluorescence bioimaging with conjugated polyelectrolytes. <i>Nanoscale</i> , 2012 , 4, 6150-65	7.7	67
14	Conjugated Polymer Based Nanoparticles as Dual-Modal Probes for Targeted In Vivo Fluorescence and Magnetic Resonance Imaging. <i>Advanced Functional Materials</i> , 2012 , 22, 3107-3115	15.6	147
13	Folic acid-functionalized two-photon absorbing nanoparticles for targeted MCF-7 cancer cell imaging. <i>Chemical Communications</i> , 2011 , 47, 7323-5	5.8	139
12	Conjugated polyelectrolyte-cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. <i>Nanoscale</i> , 2011 , 3, 1997-2002	7.7	92
11	Nanospheres-incorporated implantable hydrogel as a trans-tissue drug delivery system. <i>ACS Nano</i> , 2011 , 5, 2520-34	16.7	92
10	Cisplatin-loaded gelatin-poly(acrylic acid) nanoparticles: synthesis, antitumor efficiency in vivo and penetration in tumors. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2011 , 79, 142-9	5.7	69
9	Synthesis of novel gelatin/poly(acrylic acid) nanorods via the self-assembly of nanospheres. <i>Science China Chemistry</i> , 2011 , 54, 392-396	7.9	4
8	Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus. <i>Chemical Communications</i> , 2011 , 47, 9837-9	5.8	36
7	Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. <i>ACS Nano</i> , 2009 , 3, 2740-50	16.7	210
6	Sonosenzitized AIE dots with capacities of immunogenic cell death induction and multivalent blocking of PD-L1 for amplified anti-tumor immunotherapy. <i>CCS Chemistry</i> ,1-33	7.2	12
5	Highly sensitive light-up near-infrared fluorescent probe for detection and imaging of Eglucuronidase in human serum, living cells and tumor-bearing mice. <i>Science China Materials</i> ,1	7.1	0
4	Recent advances of transition Ir(III) complexes as photosensitizers for improved photodynamic therapy. <i>View</i> ,20200179	7.8	4

LIST OF PUBLICATIONS

Cancer. Small Structures, 2200036

3	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. <i>CCS Chemistry</i> ,2791-27	79 ^{7.2}	3
2	Inorganic-organic hybrid materials to detect urinary biomarkers: Recent progress and future prospective. <i>Materials Chemistry Frontiers</i> ,	7.8	1
_	Advances in Prostate-Specific Membrane Antigen (PSMA)-Targeted Phototheranostics of Prostate	0 =	

8.7

9