Ali H Omar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8077430/publications.pdf

Version: 2024-02-01

66 6,915 33 60 papers citations h-index g-index

73 73 73 4926
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2310-2323.	1.3	1,820
2	The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1994-2014.	1.3	820
3	The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance. Journal of Atmospheric and Oceanic Technology, 2009, 26, 1198-1213.	1.3	430
4	The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmospheric Measurement Techniques, 2018, 11, 6107-6135.	3.1	334
5	Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. Journal of Geophysical Research, 2005, 110, .	3.3	295
6	Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products., 2004, 5575, 16.		267
7	CALIPSO/CALIOP Cloud Phase Discrimination Algorithm. Journal of Atmospheric and Oceanic Technology, 2009, 26, 2293-2309.	1.3	261
8	The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloudâ€Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophysical Research Letters, 2015, 42, 1984-1991.	4.0	251
9	Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. Journal of Geophysical Research, 2010, 115, .	3.3	218
10	CALIPSO lidar observations of the optical properties of Saharan dust: A case study of longâ€range transport. Journal of Geophysical Research, 2008, 113, .	3.3	189
11	Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements. Remote Sensing of Environment, 2015, 159, 232-249.	11.0	146
12	Intercomparison of column aerosol optical depths from CALIPSO and MODIS-Aqua. Atmospheric Measurement Techniques, 2011, 4, 131-141.	3.1	140
13	Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era. Frontiers in Earth Science, 2019, 7, .	1.8	98
14	Contrasting effects on deep convective clouds by different types of aerosols. Nature Communications, 2018, 9, 3874.	12.8	96
15	Sea surface wind speed estimation from space-based lidar measurements. Atmospheric Chemistry and Physics, 2008, 8, 3593-3601.	4.9	89
16	Lidar Measurements for Desert Dust Characterization: An Overview. Advances in Meteorology, 2012, 2012, 1-36.	1.6	88
17	Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmospheric Measurement Techniques, 2019, 12, 703-734.	3.1	80
18	CALIOP observations of the transport of ash from the Eyjafjallaj \tilde{A} ¶kull volcano in April 2010. Journal of Geophysical Research, 2012, 117, .	3.3	72

#	Article	IF	CITATIONS
19	CALIPSO lidar calibration at 532 nm: versionÂ4 nighttime algorithm. Atmospheric Measurement Techniques, 2018, 11, 1459-1479.	3.1	70
20	Estimates of African Dust Deposition Along the Transâ€Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7975-7996.	3.3	68
21	Stratospheric Injection of Massive Smoke Plume From Canadian Boreal Fires in 2017 as Seen by DSCOVRâ€EPIC, CALIOP, and OMPSâ€LP Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032579.	3.3	63
22	Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmospheric Chemistry and Physics, 2010, 10, 12273-12283.	4.9	56
23	Comparison of aerosol optical depth between CALIOP and MODISâ€Aqua for CALIOP aerosol subtypes over the ocean. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,241.	3.3	56
24	Estimation of the radiative forcing by key aerosol types in worldwide locations using a column model and AERONET data. Atmospheric Environment, 2005, 39, 6620-6630.	4.1	52
25	Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds. Atmospheric Chemistry and Physics, 2015, 15, 1265-1288.	4.9	52
26	Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets. Atmospheric Chemistry and Physics, 2018, 18, 11247-11260.	4.9	49
27	Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sensing of Environment, 2020, 245, 111827.	11.0	49
28	Effective lidar ratios of dense dust layers over North Africa derived from the CALIOP measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 204-213.	2.3	44
29	Atmospheric distributions of soot particles by current and future aircraft fleets and resulting radiative forcing on climate. Journal of Geophysical Research, 1998, 103, 31657-31667.	3.3	43
30	Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1098-1113.	3.3	41
31	Extinctionâ€toâ€backscatter ratios of Saharan dust layers derived from in situ measurements and CALIPSO overflights during NAMMA. Journal of Geophysical Research, 2010, 115, .	3.3	40
32	An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements. Remote Sensing of Environment, 2012, 121, 125-131.	11.0	40
33	Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry. Frontiers in Environmental Science, 2019, 7, .	3.3	37
34	Transpacific transport and evolution of the optical properties of Asian dust. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 116, 24-33.	2.3	34
35	Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors. Atmospheric Chemistry and Physics, 2019, 19, 4933-4962.	4.9	34
36	Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument. Frontiers in Earth Science, 2019, 7, .	1.8	31

#	Article	IF	CITATIONS
37	Observations by the Lidar In-Space Technology Experiment (LITE) of high-altitude cirrus clouds over the equator in regions exhibiting extremely cold temperatures. Journal of Geophysical Research, 2001, 106, 1227-1236.	3.3	26
38	New Ocean Subsurface Optical Properties From Space Lidars: CALIOP/CALIPSO and ATLAS/ICESatâ€2. Earth and Space Science, 2021, 8, e2021EA001839.	2.6	26
39	The vertical distribution of thin features over the Arctic analysed from CALIPSO observations: Part I: Optically thin clouds. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 77.	1.6	25
40	The impact of local sources and longâ€range transport on aerosol properties over the northeast U.S. region during INTEXâ€NA. Journal of Geophysical Research, 2008, 113, .	3.3	23
41	Deriving Marine-Boundary-Layer Lapse Rate from Collocated CALIPSO, MODIS, and AMSR-E Data to Study Global Low-Cloud Height Statistics. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 649-652.	3.1	22
42	CALIPSO lidar ratio retrieval over the ocean. Optics Express, 2011, 19, 18696.	3.4	22
43	Aerosol models for the CALIPSO lidar inversion algorithms. , 2004, , .		21
44	The vertical distribution of thin features over the Arctic analysed from CALIPSO observations: Part II: Aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 86.	1.6	20
45	Enabling Value Added Scientific Applications of ICESatâ€2 Data With Effective Removal of Afterpulses. Earth and Space Science, 2021, 8, e2021EA001729.	2.6	18
46	Dust Lidar Ratios Retrieved from the CALIOP Measurements Using the MODIS AOD as a Constraint. Remote Sensing, 2020, 12, 251.	4.0	15
47	Particulate contributions to light extinction and local forcing at a rural Illinois site. Atmospheric Environment, 1999, 33, 2637-2646.	4.1	13
48	Swelling of transported smoke from savanna fires over the Southeast Atlantic Ocean. Remote Sensing of Environment, 2018, 211, 105-111.	11.0	12
49	Application of high-dimensional fuzzy & amp;lt;i& amp;gt;k& amp;lt;/i& amp;gt;-means cluster analysis to CALIOP/CALIPSO version 4.1 cloud–aerosol discrimination. Atmospheric Measurement Techniques, 2019, 12, 2261-2285.	3.1	12
50	New attenuated backscatter profile by removing the CALIOP receiver's transient response. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107244.	2.3	11
51	Assessing CALIOP-Derived Planetary Boundary Layer Height Using Ground-Based Lidar. Remote Sensing, 2021, 13, 1496.	4.0	11
52	Plankton Aerosol, Cloud, ocean Ecosystem mission: atmosphere measurements for air quality applications. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	10
53	Selection algorithm for the CALIPSO lidar aerosol extinction-to-backscatter ratio. , 2006, , .		8
54	Ocean Lidar Measurements of Beam Attenuation and a Roadmap to Accurate Phytoplankton Biomass Estimates. EPJ Web of Conferences, 2016, 119, 22003.	0.3	8

#	Article	IF	CITATIONS
55	Advantages of Measuring the Q Stokes Parameter in Addition to the Total Radiance I in the Detection of Absorbing Aerosols. Frontiers in Earth Science, $2018, 6, .$	1.8	8
56	Global Ocean Studies from CALIOP/CALIPSO by Removing Polarization Crosstalk Effects. Remote Sensing, 2021, 13, 2769.	4.0	8
57	Identifying Aerosol Subtypes from CALIPSO Lidar Profiles Using Deep Machine Learning. Atmosphere, 2021, 12, 10.	2.3	7
58	Deriving Snow Depth From ICESat-2 Lidar Multiple Scattering Measurements. Frontiers in Remote Sensing, 2022, 3, .	3.5	7
59	A Decade of CALIPSO Observations of Asian and Saharan Dust Properties near Source and Transport Regions. E3S Web of Conferences, 2019, 99, 02008.	0.5	3
60	Deriving Snow Depth From ICESat-2 Lidar Multiple Scattering Measurements: Uncertainty Analyses. Frontiers in Remote Sensing, 2022, 3, .	3.5	3
61	A portable scanning lidar system used for aerosol detection. , 2003, , .		2
62	Collaborations Focused on Enhancing Undergraduate Involvement in Remote Sensing Applications to Atmospheric and Earth Science Research. , 2006 , , .		2
63	Cloud-Aerosol Interactions: Retrieving Aerosol \tilde{A} ngstr \tilde{A} ¶m Exponents from Calipso Measurements of Opaque Water Clouds. EPJ Web of Conferences, 2016, 119, 11001.	0.3	2
64	Aerosol Optical Properties Above Opaque Water Clouds Derived From The Caliop Version 4 Level 1 Data. EPJ Web of Conferences, 2016, 119, 04010.	0.3	1
65	Partially melting droplets strongly enhance lidar backscatter. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 281, 108107.	2.3	1
66	Distributions of Aerosol Extinction to Backscatter Ratios Derived from Cluster Analysis of AERONET Data., 2006,,.		0