
Joshua D Willott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076863/publications.pdf Version: 2024-02-01

Ιοςμικ D Μ/Ποττ

#	Article	IF	CITATIONS
1	Polyelectrolyte Complex Hollow Fiber Membranes Prepared via Aqueous Phase Separation. ACS Applied Polymer Materials, 2022, 4, 1010-1020.	2.0	11
2	Hot-pressing polyelectrolyte complexes into tunable dense saloplastics. Polymer, 2022, 242, 124583.	1.8	13
3	Tuning the Charge of Polyelectrolyte Complex Membranes Prepared via Aqueous Phase Separation. Soft Matter, 2021, 17, 9420-9427.	1.2	8
4	Geometrical Confinement Modulates the Thermoresponse of a Poly(<i>N</i> -isopropylacrylamide) Brush. Macromolecules, 2021, 54, 2541-2550.	2.2	10
5	Sustainable Aqueous Phase Separation membranes prepared through mild pH shift induced polyelectrolyte complexation of PSS and PEI. Journal of Membrane Science, 2021, 625, 119114.	4.1	28
6	Effect of Solution Viscosity on the Precipitation of PSaMA in Aqueous Phase Separation-Based Membrane Formation. Polymers, 2021, 13, 1775.	2.0	6
7	Enhancing the Separation Performance of Aqueous Phase Separation-Based Membranes through Polyelectrolyte Multilayer Coatings and Interfacial Polymerization. ACS Applied Polymer Materials, 2021, 3, 3560-3568.	2.0	13
8	Solvent and pH Stability of Poly(styrene-alt-maleic acid) (PSaMA) Membranes Prepared by Aqueous Phase Separation (APS). Membranes, 2021, 11, 835.	1.4	1
9	Stimuli-Responsive Membranes through Sustainable Aqueous Phase Separation. ACS Applied Polymer Materials, 2020, 2, 659-667.	2.0	48
10	Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation. Advanced Functional Materials, 2020, 30, 1907344.	7.8	74
11	New Method toward a Robust Covalently Attached Cross-Linked Nanofiltration Membrane. ACS Applied Materials & Interfaces, 2020, 12, 47948-47956.	4.0	11
12	Tuning the structure and performance of polyelectrolyte complexation based aqueous phase separation membranes. Journal of Membrane Science, 2020, 615, 118502.	4.1	22
13	Weak polyanion and strong polycation complex based membranes: Linking aqueous phase separation to traditional membrane fabrication. European Polymer Journal, 2020, 139, 110015.	2.6	22
14	Enrichment of Charged Monomers Explains Non-monotonic Polymer Volume Fraction Profiles of Multi-stimulus Responsive Copolymer Brushes. Langmuir, 2020, 36, 12460-12472.	1.6	8
15	Role of Polycation and Cross-Linking in Polyelectrolyte Multilayer Membranes. ACS Applied Polymer Materials, 2020, 2, 5278-5289.	2.0	27
16	Interplay of Composition, pH, and Temperature on the Conformation of Multi-stimulus-responsive Copolymer Brushes: Comparison of Experiment and Theory. Langmuir, 2020, 36, 5765-5777.	1.6	7
17	Ion specific effects on aqueous phase separation of responsive copolymers for sustainable membranes. Journal of Colloid and Interface Science, 2020, 576, 186-194.	5.0	14
18	Polyelectrolyte Complex Membranes via Salinity Change Induced Aqueous Phase Separation. ACS Applied Polymer Materials, 2020, 2, 2612-2621.	2.0	45

Joshua D Willott

#	Article	IF	CITATIONS
19	Aqueous Phase Separation of Responsive Copolymers for Sustainable and Mechanically Stable Membranes. ACS Applied Polymer Materials, 2020, 2, 1702-1710.	2.0	27
20	Structure and Hydration of Asymmetric Polyelectrolyte Multilayers as Studied by Neutron Reflectometry: Connecting Multilayer Structure to Superior Membrane Performance. Macromolecules, 2020, 53, 10644-10654.	2.2	12
21	Combined Experimental and Theoretical Study of Weak Polyelectrolyte Brushes in Salt Mixtures. Langmuir, 2019, 35, 2709-2718.	1.6	17
22	Behavior of Weak Polyelectrolyte Brushes in Mixed Salt Solutions. Macromolecules, 2018, 51, 1198-1206.	2.2	25
23	Enhanced specific ion effects in ethylene glycol-based thermoresponsive polymer brushes. Journal of Colloid and Interface Science, 2017, 490, 869-878.	5.0	31
24	Physicochemical behaviour of cationic polyelectrolyte brushes. Progress in Polymer Science, 2017, 64, 52-75.	11.8	52
25	Influence of Anion Hydrophilicity on the Conformation of a Hydrophobic Weak Polyelectrolyte Brush. Macromolecules, 2016, 49, 9605-9617.	2.2	39
26	Specific Anion Effects on the Internal Structure of a Poly(<i>N</i> -isopropylacrylamide) Brush. Macromolecules, 2016, 49, 6050-6060.	2.2	51
27	Specific ion modulated thermoresponse of poly(N-isopropylacrylamide) brushes. Physical Chemistry Chemical Physics, 2016, 18, 6037-6046.	1.3	58
28	Nature of the Specific Anion Response of a Hydrophobic Weak Polyelectrolyte Brush Revealed by AFM Force Measurements. Macromolecules, 2016, 49, 2327-2338.	2.2	38
29	Hydrophobic effects within the dynamic pH-response of polybasic tertiary amine methacrylate brushes. Physical Chemistry Chemical Physics, 2015, 17, 3880-3890.	1.3	41
30	Anion-Specific Effects on the Behavior of pH-Sensitive Polybasic Brushes. Langmuir, 2015, 31, 3707-3717.	1.6	61
31	Critical Salt Effects in the Swelling Behavior of a Weak Polybasic Brush. Langmuir, 2014, 30, 1827-1836.	1.6	63
32	Effect of Colloidal Substrate Curvature on pH-Responsive Polyelectrolyte Brush Growth. Langmuir, 2013, 29, 6131-6140.	1.6	31
33	pH-Responsive Brush-Modified Silica Hybrids Synthesized by Surface-Initiated ARGET ATRP. ACS Macro Letters, 2012, 1, 1161-1165.	2.3	47