List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can multi-species biofilms defeat antimicrobial surfaces on medical devices?. Current Opinion in Biomedical Engineering, 2022, 22, 100370.	1.8	7
2	Metabolic Profiling of Interspecies Interactions During Sessile Bacterial Cultivation Reveals Growth and Sporulation Induction in Paenibacillus amylolyticus in Response to Xanthomonas retroflexus. Frontiers in Cellular and Infection Microbiology, 2022, 12, 805473.	1.8	1
3	Trans-kingdom interactions in mixed biofilm communities. FEMS Microbiology Reviews, 2022, 46, .	3.9	12
4	Enhanced Antibiotic Tolerance of an In Vitro Multispecies Uropathogen Biofilm Model, Useful for Studies of Catheter-Associated Urinary Tract Infections. Microorganisms, 2022, 10, 1207.	1.6	6
5	Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. Science of the Total Environment, 2021, 763, 142991.	3.9	11
6	Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Critical Reviews in Microbiology, 2021, 47, 338-358.	2.7	39
7	Biofilms can act as plasmid reserves in the absence of plasmid specific selection. Npj Biofilms and Microbiomes, 2021, 7, 78.	2.9	14
8	High-throughput screening alternative to crystal violet biofilm assay combining fluorescence quantification and imaging. Journal of Microbiological Methods, 2021, 190, 106343.	0.7	14
9	Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. Npj Biofilms and Microbiomes, 2021, 7, 82.	2.9	45
10	Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Critical Reviews in Food Science and Nutrition, 2020, 60, 2277-2293.	5.4	114
11	Unravelling interspecies interactions across heterogeneities in complex biofilm communities. Environmental Microbiology, 2020, 22, 5-16.	1.8	60
12	Do Mixed-Species Biofilms Dominate in Chronic Infections?–Need for in situ Visualization of Bacterial Organization. Frontiers in Cellular and Infection Microbiology, 2020, 10, 396.	1.8	32
13	Persistence and progression of staphylococcal infection in the presence of public goods. Npj Biofilms and Microbiomes, 2020, 6, 55.	2.9	1
14	Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm, 2020, 2, 100031.	1.5	20
15	The T-shirt microbiome is distinct between individuals and shaped by washing and fabric type. Environmental Research, 2020, 185, 109449.	3.7	15
16	High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in <i>Vibrio anguillarum</i> . ISME Journal, 2020, 14, 1731-1742.	4.4	52
17	Community-intrinsic properties enhance keratin degradation from bacterial consortia. PLoS ONE, 2020, 15, e0228108.	1.1	16
18	Community-intrinsic properties enhance keratin degradation from bacterial consortia. , 2020, 15, e0228108.		0

#	Article	IF	CITATIONS
19	Community-intrinsic properties enhance keratin degradation from bacterial consortia. , 2020, 15, e0228108.		0
20	Community-intrinsic properties enhance keratin degradation from bacterial consortia. , 2020, 15, e0228108.		0
21	Community-intrinsic properties enhance keratin degradation from bacterial consortia. , 2020, 15, e0228108.		0
22	Interspecies interactions reduce selection for a biofilmâ€optimized variant in a fourâ€species biofilm model. Environmental Microbiology Reports, 2019, 11, 835-839.	1.0	7
23	Interspecies interactions reduce selection for a biofilm optimized variant in a fourâ€species biofilm model. Environmental Microbiology, 2019, , .	1.8	1
24	Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME Journal, 2019, 13, 3054-3066.	4.4	59
25	Priority of Early Colonizers but No Effect on Cohabitants in a Synergistic Biofilm Community. Frontiers in Microbiology, 2019, 10, 1949.	1.5	11
26	Insights into Psychrotrophic Bacteria in Raw Milk: A Review. Journal of Food Protection, 2019, 82, 1148-1159.	0.8	40
27	Big Impact of the Tiny: Bacteriophage–Bacteria Interactions in Biofilms. Trends in Microbiology, 2019, 27, 739-752.	3.5	98
28	Fluidic resistance control enables high-throughput establishment of mixed-species biofilms. BioTechniques, 2019, 66, 235-239.	0.8	5
29	Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations. Macromolecular Bioscience, 2019, 19, e1800384.	2.1	66
30	Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm. ISME Journal, 2018, 12, 1940-1951.	4.4	40
31	Microbial Diversity and Putative Opportunistic Pathogens in Dishwasher Biofilm Communities. Applied and Environmental Microbiology, 2018, 84, .	1.4	50
32	Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control, 2018, 91, 47-57.	2.8	39
33	Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME Journal, 2018, 12, 1496-1507.	4.4	603
34	Bacterial social interactions and the emergence of community-intrinsic properties. Current Opinion in Microbiology, 2018, 42, 104-109.	2.3	76
35	Insights into Bacterial Milk Spoilage with Particular Emphasis on the Roles of Heat-Stable Enzymes, Biofilms, and Quorum Sensing. Journal of Food Protection, 2018, 81, 1651-1660.	0.8	36
36	Staphylococcus aureuscoagulases are exploitable yet stable public goods in clinically relevant conditions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11771-E11779.	3.3	10

#	Article	IF	CITATIONS
37	Enhanced bacterial mutualism through an evolved biofilm phenotype. ISME Journal, 2018, 12, 2608-2618.	4.4	34
38	Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers. Frontiers in Microbiology, 2018, 9, 21.	1.5	46
39	<i>In Vitro</i> Community Synergy between Bacterial Soil Isolates Can Be Facilitated by pH Stabilization of the Environment. Applied and Environmental Microbiology, 2018, 84, .	1.4	18
40	Lowâ€abundant species facilitates specific spatial organization that promotes multispecies biofilm formation. Environmental Microbiology, 2017, 19, 2893-2905.	1.8	57
41	Antagonism correlates with metabolic similarity in diverse bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10684-10688.	3.3	135
42	A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific Reports, 2017, 7, 16483.	1.6	51
43	Distinct gene expression profile of <i>Xanthomonas retroflexus</i> engaged in synergistic multispecies biofilm formation. ISME Journal, 2017, 11, 300-303.	4.4	51
44	A post-planktonic era of in vitro infectious models: issues and changes addressed by a clinically relevant wound like media. Critical Reviews in Microbiology, 2017, 43, 453-465.	2.7	20
45	All together now: experimental multispecies biofilm model systems. Environmental Microbiology, 2017, 19, 42-53.	1.8	88
46	Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan. Frontiers in Microbiology, 2017, 8, 2649.	1.5	52
47	Interspecific Bacterial Interactions are Reflected in Multispecies Biofilm Spatial Organization. Frontiers in Microbiology, 2016, 7, 1366.	1.5	143
48	Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer. PLoS ONE, 2016, 11, e0162390.	1.1	16
49	Genome Sequence of <i>Kocuria palustris</i> Strain W4. Genome Announcements, 2016, 4, .	0.8	0
50	Genome Sequence of Kocuria varians G6 Isolated from a Slaughterhouse in Denmark. Genome Announcements, 2016, 4, .	0.8	2
51	Draft Genome Assembly of Two Pseudoclavibacter helvolus Strains, G8 and W3, Isolated from Slaughterhouse Environments. Genome Announcements, 2016, 4, .	0.8	0
52	Enhanced plasmid loss in bacterial populations exposed to the antimicrobial compound irgasan delivered from interpenetrating polymer network silicone hydrogels. Plasmid, 2016, 87-88, 72-78.	0.4	14
53	Genome Sequence of Psychrobacter cibarius Strain W1. Genome Announcements, 2016, 4, .	0.8	1
54	Genome Sequence of Arthrobacter antarcticus Strain W2, Isolated from a Slaughterhouse. Genome Announcements, 2016, 4, .	0.8	1

#	Article	IF	CITATIONS
55	Draft Genome Sequences of Two <i>Kocuria</i> Isolates, <i>K. salsicia</i> G1 and <i>K. rhizophila</i> G2, Isolated from a Slaughterhouse in Denmark. Genome Announcements, 2016, 4, .	0.8	1
56	Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology, 2016, 18, 2565-2574.	1.8	97
57	Studying Bacterial Multispecies Biofilms: Where to Start?. Trends in Microbiology, 2016, 24, 503-513.	3.5	150
58	The potential for bioaugmentation of sand filter materials from waterworks using bacterial cultures degrading 4-chloro-2-methylphenoxyacetic acid. Pest Management Science, 2015, 71, 257-265.	1.7	8
59	Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiology, 2015, 51, 18-24.	2.1	88
60	High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME Journal, 2015, 9, 81-89.	4.4	261
61	High-Throughput Screening of Multispecies Biofilm Formation and Quantitative PCR-Based Assessment of Individual Species Proportions, Useful for Exploring Interspecific Bacterial Interactions. Microbial Ecology, 2014, 68, 146-154.	1.4	84
62	Interactions in multispecies biofilms: do they actually matter?. Trends in Microbiology, 2014, 22, 84-91.	3.5	417
63	A spatiotemporal view of plasmid loss in biofilms and planktonic cultures. Biotechnology and Bioengineering, 2013, 110, 3071-3074.	1.7	9
64	The ability of soil bacteria to receive the conjugative IncP1 plasmid, pKJK10, is different in a mixed community compared to single strains. FEMS Microbiology Letters, 2013, 338, 95-100.	0.7	30
65	The impact of the conjugative IncP-1 plasmid pKJK5 on multispecies biofilm formation is dependent on the plasmid host. FEMS Microbiology Letters, 2013, 344, 186-192.	0.7	30
66	Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS ONE, 2013, 8, e68484.	1.1	85
67	Sequencing of IncX-Plasmids Suggests Ubiquity of Mobile Forms of a Biofilm-Promoting Gene Cassette Recruited from Klebsiella pneumoniae. PLoS ONE, 2012, 7, e41259.	1.1	38
68	The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunology and Medical Microbiology, 2012, 65, 183-195.	2.7	484
69	Biofilms in Soil. Encyclopedia of Earth Sciences Series, 2011, , 70-75.	0.1	9
70	Biofilms in chronic infections – a matter of opportunity – monospecies biofilms in multispecies infections. FEMS Immunology and Medical Microbiology, 2010, 59, 324-336.	2.7	351
71	All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid, 2009, 62, 134-139.	0.4	82
72	The presence of embedded bacterial pure cultures in agar plates stimulate the culturability of soil bacteria. Journal of Microbiological Methods, 2009, 79, 166-173.	0.7	18

#	Article	IF	CITATIONS
73	The serine protease Esperase HPF inhibits the formation of multispecies biofilm. Biofouling, 2009, 25, 667-674.	0.8	26
74	Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiology (United Kingdom), 2008, 154, 187-195.	0.7	99
75	Establishment and Early Succession of a Multispecies Biofilm Composed of Soil Bacteria. Microbial Ecology, 2007, 54, 352-362.	1.4	54
76	Making bio-sense of toxicity: new developments in whole-cell biosensors. Current Opinion in Biotechnology, 2006, 17, 11-16.	3.3	120
77	Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms. Applied and Environmental Microbiology, 2006, 72, 3916-3923.	1.4	572
78	Reporter Gene Technology in Soil Ecology; Detection of Bioavailability and Microbial Interactions. , 2006, , 397-419.		6
79	Use of a Whole-Cell Biosensor and Flow Cytometry to Detect AHL Production by an Indigenous Soil Community During Decomposition of Litter. Microbial Ecology, 2005, 50, 221-229.	1.4	39
80	Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology (United Kingdom), 2005, 151, 373-383.	0.7	451
81	Plasmid-Encoded Multidrug Efflux Pump Conferring Resistance to Olaquindox in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2004, 48, 3332-3337.	1.4	187
82	Presence of N-Acyl Homoserine Lactones in Soil Detected by a Whole-Cell Biosensor and Flow Cytometry. Microbial Ecology, 2003, 45, 226-236.	1.4	85