
John Q Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid-Sensing Ion Channel 2: Function and Modulation. Membranes, 2022, 12, 113.	3.0	9
2	Group I Metabotropic Glutamate Receptors and Interacting Partners: An Update. International Journal of Molecular Sciences, 2022, 23, 840.	4.1	12
3	Interaction of JNK and mGluR5 in the regulation of psychomotor behaviours after repeated cocaine administration. Addiction Biology, 2022, 27, e13127.	2.6	2
4	Roles of non-receptor tyrosine kinases in pathogenesis and treatment of depression. Journal of Integrative Neuroscience, 2022, 21, 025.	1.7	6
5	Upregulation of Src Family Tyrosine Kinases in the Rat Striatum by Adenosine A2A Receptors. Journal of Molecular Neuroscience, 2022, , 1.	2.3	0
6	Downregulation of surface AMPA receptor expression in the striatum following prolonged social isolation, a role of mGlu5 receptors. IBRO Neuroscience Reports, 2022, 13, 22-30.	1.6	1
7	Use of actigraphy and sleep diaries to assess sleep and academic performance in pharmacy students. Currents in Pharmacy Teaching and Learning, 2021, 13, 57-62.	1.0	4
8	Acid-Sensing Ion Channels and Mechanosensation. International Journal of Molecular Sciences, 2021, 22, 4810.	4.1	40
9	Roles of adenosine A ₁ receptors in the regulation of SFK activity in the rat forebrain. Brain and Behavior, 2021, 11, e2254.	2.2	1
10	Effects of general versus subarachnoid anaesthesia on circadian melatonin rhythm and postoperative delirium in elderly patients undergoing hip fracture surgery: A prospective cohort clinical trial. EBioMedicine, 2021, 70, 103490.	6.1	27
11	Striatonigrostriatal Spirals in Addiction. Frontiers in Neural Circuits, 2021, 15, 803501.	2.8	0
12	Linkage of Non-receptor Tyrosine Kinase Fyn to mGlu5 Receptors in Striatal Neurons in a Depression Model. Neuroscience, 2020, 433, 11-20.	2.3	9
13	Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A ₁ receptors in the male rat forebrain. Brain and Behavior, 2020, 10, e01543.	2.2	3
14	Autophagy prevents hippocampal α-synuclein oligomerization and early cognitive dysfunction after anesthesia/surgery in aged rats. Aging, 2020, 12, 7262-7281.	3.1	24
15	Changes in ERK1/2 phosphorylation in the rat striatum and medial prefrontal cortex following administration of the adenosine A1 receptor agonist and antagonist. Neuroscience Letters, 2019, 699, 47-53.	2.1	2
16	The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Molecular Neurobiology, 2019, 56, 6197-6205.	4.0	159
17	Amphetamine-induced Conditioned Place Preference and Changes in mGlu1/5 Receptor Expression and Signaling in the Rat Medial Prefrontal Cortex. Neuroscience, 2019, 400, 110-119.	2.3	4
18	Amphetamine activates non-receptor tyrosine kinase Fyn and stimulates ERK phosphorylation in the rat striatum in vivo. European Journal of Pharmacology, 2019, 843, 45-54.	3.5	9

#	Article	IF	CITATIONS
19	Regulation of Phosphorylation of AMPA Glutamate Receptors by Muscarinic M4 Receptors in the Striatum In vivo. Neuroscience, 2018, 375, 84-93.	2.3	4
20	Alterations in mGlu5 receptor expression and function in the striatum in a rat depression model. Journal of Neurochemistry, 2018, 145, 287-298.	3.9	19
21	Muscarinic Acetylcholine Receptors Inhibit Fyn Activity in the Rat Striatum In Vivo. Journal of Molecular Neuroscience, 2018, 64, 523-532.	2.3	8
22	Inhibition of basal and amphetamine-stimulated extracellular signal-regulated kinase (ERK) phosphorylation in the rat forebrain by muscarinic acetylcholine M4 receptors. Brain Research, 2018, 1688, 103-112.	2.2	4
23	Pharmacological modulation of AMPA receptor phosphorylation by dopamine and muscarinic receptor agents in the rat medial prefrontal cortex. European Journal of Pharmacology, 2018, 820, 45-52.	3.5	1
24	The Role of Extracellular Signal-Regulated Kinases (ERK) in the Regulation of mGlu5 Receptors in Neurons. Journal of Molecular Neuroscience, 2018, 66, 629-638.	2.3	4
25	Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine. Neuropharmacology, 2017, 112, 57-65.	4.1	16
26	Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain. Neurochemical Research, 2017, 42, 1202-1210.	3.3	7
27	Antagonism of Dopamine D2 Receptors Alters Phosphorylation of Fyn in the Rat Medial Prefrontal Cortex. Journal of Molecular Neuroscience, 2017, 61, 524-530.	2.3	3
28	Synaptic ERK2 Phosphorylates and Regulates Metabotropic Glutamate Receptor 1 In Vitro and in Neurons. Molecular Neurobiology, 2017, 54, 7156-7170.	4.0	18
29	An Essential Role of Fyn in the Modulation of Metabotropic Glutamate Receptor 1 in Neurons. ENeuro, 2017, 4, ENEURO.0096-17.2017.	1.9	20
30	Local substrates of non-receptor tyrosine kinases at synaptic sites in neurons. Acta Physiologica Sinica, 2017, 69, 657-665.	0.5	5
31	Dopamine D2 receptors are involved in the regulation of fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. Journal of Neuroscience Research, 2016, 94, 329-338.	2.9	20
32	Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors. Brain Research, 2016, 1646, 459-466.	2.2	2
33	Synaptically Localized Mitogen-Activated Protein Kinases: Local Substrates and Regulation. Molecular Neurobiology, 2016, 53, 6309-6315.	4.0	43
34	Tyrosine phosphorylation of glutamate receptors by non-receptor tyrosine kinases: roles in depression-like behavior. Neurotransmitter (Houston, Tex), 2016, 3, .	1.2	8
35	Regulation of Group I Metabotropic Glutamate Receptors by MAPK/ERK in Neurons. Journal of Nature and Science, 2016, 2, .	1.1	10
36	Dynamic increases in <scp>AMPA</scp> receptor phosphorylation in the rat hippocampus in response to amphetamine. Journal of Neurochemistry, 2015, 133, 795-805.	3.9	6

John Q Wang

#	Article	IF	CITATIONS
37	Regulation of synaptic MAPK/ERK phosphorylation in the rat striatum and medial prefrontal cortex by dopamine and muscarinic acetylcholine receptors. Journal of Neuroscience Research, 2015, 93, 1592-1599.	2.9	19
38	Epilepsy spectrum disorders: A concept in need of validation or refutation. Medical Hypotheses, 2015, 85, 656-663.	1.5	8
39	Metabotropic glutamate receptor 5 upregulates surface NMDA receptor expression in striatal neurons via CaMKII. Brain Research, 2015, 1624, 414-423.	2.2	28
40	Dopaminergic and cholinergic regulation of Fyn tyrosine kinase phosphorylation in the rat striatum inÂvivo. Neuropharmacology, 2015, 99, 491-499.	4.1	17
41	Roles of subunit phosphorylation in regulating glutamate receptor function. European Journal of Pharmacology, 2014, 728, 183-187.	3.5	73
42	Rapid and sustained GluA1 S845 phosphorylation in synaptic and extrasynaptic locations in the rat forebrain following amphetamine administration. Neurochemistry International, 2014, 64, 48-54.	3.8	9
43	Propofol selectively alters GluA1 AMPA receptor phosphorylation in the hippocampus but not prefrontal cortex in young and aged mice. European Journal of Pharmacology, 2014, 738, 237-244.	3.5	2
44	Phosphorylation and regulation of glutamate receptors by CaMKII. Acta Physiologica Sinica, 2014, 66, 365-72.	0.5	15
45	Activation of protein kinase C is required for AMPA receptor GluR1 phosphorylation at serine 845 in the dorsal striatum following repeated cocaine administration. Psychopharmacology, 2013, 227, 437-445.	3.1	14
46	Group III metabotropic glutamate receptors and drug addiction. Frontiers of Medicine, 2013, 7, 445-451.	3.4	23
47	Differential regulation of <scp>CaMK</scp> IIα interactions with m <scp>G</scp> luR5 and <scp>NMDA</scp> receptors by <scp>C</scp> a ²⁺ in neurons. Journal of Neurochemistry, 2013, 127, 620-631.	3.9	40
48	Regulation of phosphorylation of synaptic and extrasynaptic GluA1 AMPA receptors in the rat forebrain by amphetamine. European Journal of Pharmacology, 2013, 715, 164-171.	3.5	12
49	Amphetamine increases phosphorylation of MAPK/ERK at synaptic sites in the rat striatum and medial prefrontal cortex. Brain Research, 2013, 1494, 101-108.	2.2	28
50	Phosphorylation and Feedback Regulation of Metabotropic Glutamate Receptor 1 by Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Neuroscience, 2013, 33, 3402-3412.	3.6	50
51	Modulation of Ionotropic Glutamate Receptors and Acid-Sensing Ion Channels by Nitric Oxide. Frontiers in Physiology, 2012, 3, 164.	2.8	23
52	Upregulation of Npas4 protein expression by chronic administration of amphetamine in rat nucleus accumbens in vivo. Neuroscience Letters, 2012, 528, 210-214.	2.1	10
53	Cocaine facilitates PKC maturation by upregulating its phosphorylation at the activation loop in rat striatal neurons in vivo. Brain Research, 2012, 1435, 146-153.	2.2	7
54	Interactions and phosphorylation of postsynaptic density 93 (PSD-93) by extracellular signal-regulated kinase (ERK). Brain Research, 2012, 1465, 18-25.	2.2	16

#	Article	IF	CITATIONS
55	Dynamic loss of surfaceâ€expressed AMPA receptors in mouse cortical and striatal neurons during anesthesia. Journal of Neuroscience Research, 2012, 90, 315-323.	2.9	13
56	Linking cocaine to endoplasmic reticulum in striatal neurons: Role of glutamate receptors. Basal Ganglia, 2011, 1, 59-63.	0.3	12
57	Reversible Palmitoylation Regulates Surface Stability of AMPA Receptors in the Nucleus Accumbens in Response to Cocaine In Vivo. Biological Psychiatry, 2011, 69, 1035-1042.	1.3	34
58	Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: A differential role of NMDA receptors. Neurochemistry International, 2011, 59, 610-617.	3.8	20
59	Post-Translational Modification Biology of Glutamate Receptors and Drug Addiction. Frontiers in Neuroanatomy, 2011, 5, 19.	1.7	53
60	Cocaine and HIV-1 Interplay: Molecular Mechanisms of Action and Addiction. Journal of NeuroImmune Pharmacology, 2011, 6, 503-515.	4.1	47
61	Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 288-309.	0.8	36
62	Modulation of M4 muscarinic acetylcholine receptors by interacting proteins. Neuroscience Bulletin, 2010, 26, 469-473.	2.9	10
63	Regulation of dopamine D3 receptors by protein-protein interactions. Neuroscience Bulletin, 2010, 26, 163-167.	2.9	7
64	Regulation of group I metabotropic glutamate receptor expression in the rat striatum and prefrontal cortex in response to amphetamine in vivo. Brain Research, 2010, 1326, 184-192.	2.2	15
65	CaMKIIÎ \pm interacts with M4 muscarinic receptors to control receptor and psychomotor function. EMBO Journal, 2010, 29, 2070-2081.	7.8	25
66	Alterations in subcellular expression of acid-sensing ion channels in the rat forebrain following chronic amphetamine administration. Neuroscience Research, 2010, 68, 1-8.	1.9	12
67	Amphetamine alters Ras-guanine nucleotide-releasing factor expression in the rat striatum in vivo. European Journal of Pharmacology, 2009, 619, 50-56.	3.5	11
68	Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nature Neuroscience, 2009, 12, 602-610.	14.8	106
69	Regulation of extracellular signal-regulated kinase phosphorylation in cultured rat striatal neurons. Brain Research Bulletin, 2009, 78, 328-334.	3.0	22
70	Activity-Dependent Modulation of Limbic Dopamine D3 Receptors by CaMKII. Neuron, 2009, 61, 425-438.	8.1	114
71	Acute administration of cocaine reduces metabotropic glutamate receptor 8 protein expression in the rat striatum in vivo. Neuroscience Letters, 2009, 449, 224-227.	2.1	10
72	Upregulation of acid-sensing ion channel 1 protein expression by chronic administration of cocaine in the mouse striatum in vivo. Neuroscience Letters, 2009, 459, 119-122.	2.1	17

#	Article	IF	CITATIONS
73	Group I Metabotropic Glutamate Receptor-mediated Gene Expression in Striatal Neurons. Neurochemical Research, 2008, 33, 1920-1924.	3.3	28
74	Upregulation of metabotropic glutamate receptor 8 mRNA expression in the rat forebrain after repeated amphetamine administration. Neuroscience Letters, 2008, 433, 250-254.	2.1	21
75	Phosphorylation of group I metabotropic glutamate receptors (mGluR1/5) in vitro and in vivo. Neuropharmacology, 2008, 55, 403-408.	4.1	52
76	In Vivo Regulation of Homer1a Expression in the Striatum by Cocaine. Molecular Pharmacology, 2007, 71, 1148-1158.	2.3	62
77	Protein kinase C-regulated cAMP response element-binding protein phosphorylation in cultured rat striatal neurons. Brain Research Bulletin, 2007, 72, 302-308.	3.0	42
78	Cocaine increases Ras-guanine nucleotide-releasing factor 1 protein expression in the rat striatum in vivo. Neuroscience Letters, 2007, 427, 117-121.	2.1	14
79	Regulation of mitogen-activated protein kinases by glutamate receptors. Journal of Neurochemistry, 2007, 100, 1-11.	3.9	230
80	Long-lasting up-regulation of orexin receptor type 2 protein levels in the rat nucleus accumbens after chronic cocaine administration. Journal of Neurochemistry, 2007, 103, 070710052154007-???.	3.9	50
81	Inhibition of the MAPK/ERK cascade: a potential transcription-dependent mechanism for the amnesic effect of anesthetic propofol. Neuroscience Bulletin, 2007, 23, 119-124.	2.9	18
82	Regulation of phosphorylation of NMDA receptor NR1 subunits in the rat neostriatum by group I metabotropic glutamate receptors in vivo. Neuroscience Letters, 2006, 394, 246-251.	2.1	32
83	Modulation of D2R-NR2B Interactions in Response to Cocaine. Neuron, 2006, 52, 897-909.	8.1	235
84	Propofol Inhibits Phosphorylation of NÂ-methyl-d-aspartate Receptor NR1 Subunits in Neurons. Anesthesiology, 2006, 104, 763-769.	2.5	95
85	Inhibition of Glutamatergic Activation of Extracellular Signal–regulated Protein Kinases in Hippocampal Neurons by the Intravenous Anesthetic Propofol. Anesthesiology, 2006, 105, 1182-1191.	2.5	49
86	Phosphorylation of glutamate receptors: A potential mechanism for the regulation of receptor function and psychostimulant action. Journal of Neuroscience Research, 2006, 84, 1621-1629.	2.9	59
87	A Signaling Mechanism from GÂq-Protein-Coupled Metabotropic Glutamate Receptors to Gene Expression: Role of the c-Jun N-Terminal Kinase Pathway. Journal of Neuroscience, 2006, 26, 971-980.	3.6	50
88	Phosphorylation of AMPA Receptors: Mechanisms and Synaptic Plasticity. Molecular Neurobiology, 2005, 32, 237-250.	4.0	125
89	Role of Protein Phosphatase 2A in mGluR5-regulated MEK/ERK Phosphorylation in Neurons. Journal of Biological Chemistry, 2005, 280, 12602-12610.	3.4	79
90	The Scaffold Protein Homer1b/c Links Metabotropic Glutamate Receptor 5 to Extracellular Signal-Regulated Protein Kinase Cascades in Neurons. Journal of Neuroscience, 2005, 25, 2741-2752.	3.6	218

#	Article	IF	CITATIONS
91	Inhibition of protein phosphatase 2B upregulates serine phosphorylation of N-methyl-d-aspartate receptor NR1 subunits in striatal neurons in vivo. Neuroscience Letters, 2005, 384, 38-43.	2.1	23
92	A Novel Ca2+-Independent Signaling Pathway to Extracellular Signal-Regulated Protein Kinase by Coactivation of NMDA Receptors and Metabotropic Glutamate Receptor 5 in Neurons. Journal of Neuroscience, 2004, 24, 10846-10857.	3.6	122
93	Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons. European Journal of Neuroscience, 2004, 19, 1207-1216.	2.6	80
94	The protein phosphatase 1/2A inhibitor okadaic acid increases CREB and Elk-1 phosphorylation and c-fos expression in the rat striatum in vivo. Journal of Neurochemistry, 2004, 89, 383-390.	3.9	50
95	Glutamate Signaling to Ras-MAPK in Striatal Neurons: Mechanisms for Inducible Gene Expression and Plasticity. Molecular Neurobiology, 2004, 29, 01-14.	4.0	98
96	Distinct expression of phosphorylatedN-methyl-D-aspartate receptor NR1 subunits by projection neurons and interneurons in the striatum of normal and amphetamine-treated rats. Journal of Comparative Neurology, 2004, 474, 393-406.	1.6	17
97	mGluR5-dependent increases in immediate early gene expression in the rat striatum following acute administration of amphetamine. Molecular Brain Research, 2004, 122, 151-157.	2.3	24
98	Immunohistochemical and Immunocytochemical Detection of Phosphoproteins in Striatal Neurons. , 2003, 79, 273-282.		0
99	Analysis of mRNA Expression Using Double In Situ Hybridization Labeling with Isotopic and Nonisotopic Probes. , 2003, 79, 153-160.		2
100	Primary Striatal Neuronal Culture. , 2003, 79, 379-386.		10
101	Antisense Approaches in Analyzing the Functional Role of Proteins in the Central Nervous System. , 2003, 79, 365-376.		0
102	Adult Neural Stem/Progenitor Cells in the Forebrain: Implications for Psychostimulant Dependence and Medication. , 2003, 79, 33-42.		0
103	Phosphorylation of cAMP response element-binding protein in cultured striatal neurons by metabotropic glutamate receptor subtype 5. Journal of Neurochemistry, 2003, 84, 233-243.	3.9	33
104	Metabotropic glutamate receptor 5â€regulated Elkâ€1 phosphorylation and immediate early gene expression in striatal neurons. Journal of Neurochemistry, 2003, 85, 1006-1017.	3.9	22
105	Group I metabotropic glutamate receptor-mediated calcium signalling and immediate early gene expression in cultured rat striatal neurons. European Journal of Neuroscience, 2003, 17, 741-750.	2.6	41
106	Preproenkephalin mRNA expression in rat dorsal striatum induced by selective activation of metabotropic glutamate receptor subtype-5. Synapse, 2003, 47, 255-261.	1.2	22
107	Elevated neuronal nitric oxide synthase expression in chronic haloperidol-treated rats. Neuropharmacology, 2003, 45, 986-994.	4.1	31
108	Contribution of ionotropic glutamate receptors to acute amphetamine-stimulated preproenkephalin mRNA expression in the rat striatum in vivo. Neuroscience Letters, 2003, 346, 17-20.	2.1	10

John Q Wang

#	Article	IF	CITATIONS
109	Glutamate-regulated Behavior, Transmitter Release, Gene Expression and Addictive Plasticity in the Striatum: Roles of Metabotropic Glutamate Receptors. Current Neuropharmacology, 2003, 1, 1-20.	2.9	22
110	Glutamate Cascade to cAMP Response Element-Binding Protein Phosphorylation in Cultured Striatal Neurons through Calcium-Coupled Group I Metabotropic Glutamate Receptors. Molecular Pharmacology, 2002, 62, 473-484.	2.3	69
111	CREB and Elk-1 phosphorylation by metabotropic glutamate receptors in striatal neurons (Review). International Journal of Molecular Medicine, 2002, 9, 3.	4.0	7
112	CaMKII regulates amphetamine-induced ERK1/2 phosphorylation in striatal neurons. NeuroReport, 2002, 13, 1013-1016.	1.2	61
113	Activation of metabotropic glutamate receptor mediates upregulation of transcription factor mRNA expression in rat striatum induced by acute administration of amphetamine. Brain Research, 2002, 924, 167-175.	2.2	13
114	Amphetamine Increases Phosphorylation of Extracellular Signal-regulated Kinase and Transcription Factors in the Rat Striatum via Group I Metabotropic Glutamate Receptors. Neuropsychopharmacology, 2002, 27, 565-75.	5.4	89
115	Impaired preprodynorphin, but not preproenkephalin, mRNA induction in the striatum of mGluR1 mutant mice in response to acute administration of the full dopamine D1 agonist SKF-82958. Synapse, 2002, 44, 86-93.	1.2	17
116	Dose-related alteration in nitric oxide synthase mRNA expression induced by amphetamine and the full D1 dopamine receptor agonist SKF-82958 in mouse striatum. Neuroscience Letters, 2001, 311, 5-8.	2.1	19
117	Group I metabotropic glutamate receptors control phosphorylation of CREB, Elk-1 and ERK via a CaMKII-dependent pathway in rat striatum. Neuroscience Letters, 2001, 313, 129-132.	2.1	64
118	Upregulation of preprodynorphin and preproenkephalin mRNA expression by selective activation of group I metabotropic glutamate receptors in characterized primary cultures of rat striatal neurons. Molecular Brain Research, 2001, 86, 125-137.	2.3	51
119	Group I metabotropic glutamate receptor activation increases phosphorylation of cAMP response element-binding protein, Elk-1, and extracellular signal-regulated kinases in rat dorsal striatum. Molecular Brain Research, 2001, 94, 75-84.	2.3	72
120	Differentially altered mGluR1 and mGluR5 mRNA expression in rat caudate nucleus and nucleus accumbens in the development and expression of behavioral sensitization to repeated amphetamine administration. Synapse, 2001, 41, 230-240.	1.2	49
121	Selective activation of group I metabotropic glutamate receptors upregulates preprodynorphin, substance P, and preproenkephalin mRNA expression in rat dorsal striatum. Synapse, 2001, 39, 82-94.	1.2	32
122	Gliogenesis in the striatum of the adult rat: alteration in neural progenitor population after psychostimulant exposure. Developmental Brain Research, 2001, 130, 41-51.	1.7	29
123	Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Developmental Brain Research, 2001, 131, 57-65.	1.7	78
124	Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats. Pharmacology Biochemistry and Behavior, 2000, 67, 93-101.	2.9	42
125	Sustained Behavioral Stimulation Following Selective Activation of Group I Metabotropic Glutamate Receptors in Rat Striatum. Pharmacology Biochemistry and Behavior, 2000, 65, 439-447.	2.9	30
126	Activation of group III metabotropic glutamate receptors inhibits basal and amphetamine-stimulated dopamine release in rat dorsal striatum: an in vivo microdialysis study. European Journal of Pharmacology, 2000, 404, 289-297.	3.5	34

#	Article	IF	CITATIONS
127	Glutamate-dopamine interactions mediate the effects of psychostimulant drugs. Addiction Biology, 1999, 4, 141-150.	2.6	41
128	Protection against acute amphetamine-induced behavior by microinjection of a group II metabotropic glutamate receptor agonist into the dorsal striatum of rats. Neuroscience Letters, 1999, 270, 103-106.	2.1	18
129	Metabotropic glutamate receptor agonist increases neuropeptide mRNA expression in rat striatum. Molecular Brain Research, 1998, 54, 262-269.	2.3	26
130	Regulation of immediate early gene c-fos and zif/268 mRNA expression in rat striatum by metabotropic glutamate receptor. Molecular Brain Research, 1998, 57, 46-53.	2.3	36
131	Intrastriatal injection of a muscarinic receptor agonist and antagonist regulates striatal neuropeptide mRNA expression in normal and amphetamine-treated rats. Brain Research, 1997, 748, 62-70.	2.2	46
132	Intrastriatal injection of the metabotropic glutamate receptor antagonist MCPG attenuates acute amphetamine-stimulated neuropeptide mRNA expression in rat striatum. Neuroscience Letters, 1996, 218, 13-16.	2.1	27
133	Acute methamphetamine-induced zif/268, preprodynorphin, and preproenkephalin mRNA expression in rat striatum depends on activation of NMDA and kainate/AMPA receptors. Brain Research Bulletin, 1996, 39, 349-357.	3.0	39
134	D1 and D2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine. , 1996, 22, 114-122.		81
135	Alterations in striatal zif/268, preprodynorphin and preproenkephalin mRNA expression induced by repeated amphetamine administration in rats. Brain Research, 1995, 673, 262-274.	2.2	60
136	Differential Effects of D ₁ and D ₂ Dopamine Receptor Antagonists on Acute Amphetamine―or Methamphetamineâ€Induced Upâ€Regulation of <i>zif/268</i> mRNA Expression in Rat Forebrain. Journal of Neurochemistry, 1995, 65, 2706-2715.	3.9	62
137	NMDA receptors mediate amphetamine-induced upregulation ofzif/268 and preprodynorphin mRNA expression in rat striatum. Synapse, 1994, 18, 343-353.	1.2	102
138	Role of kainate/AMPA receptors in induction of striatal zif/268 and preprodynorphin mRNA by a single injection of amphetamine. Molecular Brain Research, 1994, 27, 118-126.	2.3	53