Hazel Dockrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076479/publications.pdf

Version: 2024-02-01

54 papers

2,539 citations

172457 29 h-index 197818 49 g-index

54 all docs

54 docs citations

54 times ranked 3225 citing authors

#	Article	IF	CITATIONS
1	Detection of Tuberculosis in HIV-Infected and -Uninfected African Adults Using Whole Blood RNA Expression Signatures: A Case-Control Study. PLoS Medicine, 2013, 10, e1001538.	8.4	314
2	Distinct Phases of Blood Gene Expression Pattern Through Tuberculosis Treatment Reflect Modulation of the Humoral Immune Response. Journal of Infectious Diseases, 2013, 207, 18-29.	4.0	218
3	Immunogenicity of Novel DosR Regulon-Encoded Candidate Antigens of <i>Mycobacterium tuberculosis</i> in Three High-Burden Populations in Africa. Vaccine Journal, 2009, 16, 1203-1212.	3.1	148
4	BCG Vaccination Induces Different Cytokine Profiles Following Infant BCG Vaccination in the UK and Malawi. Journal of Infectious Diseases, 2011, 204, 1075-1085.	4.0	134
5	Population Differences in Immune Responses to Bacille Calmetteâ€Guérin Vaccination in Infancy. Journal of Infectious Diseases, 2009, 199, 795-800.	4.0	100
6	Acquired immunodeficiencies and tuberculosis: focus on <scp>HIV</scp> / <scp>AIDS</scp> and diabetes mellitus. Immunological Reviews, 2015, 264, 121-137.	6.0	87
7	Inhibition of Mycobacterial Growth <i>In Vitro</i> following Primary but Not Secondary Vaccination with Mycobacterium bovis BCG. Vaccine Journal, 2013, 20, 1683-1689.	3.1	85
8	Immunological Outcomes of New Tuberculosis Vaccine Trials: WHO Panel Recommendations. PLoS Medicine, 2008, 5, e145.	8.4	82
9	Persistence of the immune response induced by BCG vaccination. BMC Infectious Diseases, 2008, 8, 9.	2.9	73
10	New Biomarkers with Relevance to Leprosy Diagnosis Applicable in Areas Hyperendemic for Leprosy. Journal of Immunology, 2012, 188, 4782-4791.	0.8	73
11	Complex cytokine profiles induced by BCG vaccination in UK infants. Vaccine, 2010, 28, 1635-1641.	3.8	71
12	Analysis of Antibody Responses to <i>Mycobacterium leprae</i> Phenolic Glycolipid I, Lipoarabinomannan, and Recombinant Proteins To Define Disease Subtype-Specific Antigenic Profiles in Leprosy. Vaccine Journal, 2011, 18, 260-267.	3.1	65
13	Differential gene expression of activating Fcl^3 receptor classifies active tuberculosis regardless of human immunodeficiency virus status or ethnicity. Clinical Microbiology and Infection, 2014, 20, O230-O238.	6.0	65
14	CCL2 Responses to Mycobacterium tuberculosis Are Associated with Disease Severity in Tuberculosis. PLoS ONE, 2009, 4, e8459.	2.5	64
15	Biomarkers for TB treatment response: Challenges and future strategies. Journal of Infection, 2008, 57, 103-109.	3.3	57
16	Identification of serological biomarkers of infection, disease progression and treatment efficacy for leprosy. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 79-89.	1.6	55
17	Utility of interferon-Î ³ ELISPOT assay responses in highly tuberculosis-exposed patients with advanced HIV infection in South Africa. BMC Infectious Diseases, 2007, 7, 99.	2.9	54
18	Analysis of Host Responses to Mycobacterium tuberculosis Antigens in a Multi-Site Study of Subjects with Different TB and HIV Infection States in Sub-Saharan Africa. PLoS ONE, 2013, 8, e74080.	2.5	48

#	Article	IF	Citations
19	TANDEM: understanding diabetes and tuberculosis. Lancet Diabetes and Endocrinology,the, 2014, 2, 270-272.	11.4	48
20	Differences between naive and memory T cell phenotype in Malawian and UK adolescents: a role for Cytomegalovirus?. BMC Infectious Diseases, 2008, 8, 139.	2.9	47
21	A comparison of IFNÎ ³ detection methods used in tuberculosis vaccine trials. Tuberculosis, 2008, 88, 631-640.	1.9	47
22	Identification of Major Factors Influencing ELISpot-Based Monitoring of Cellular Responses to Antigens from Mycobacterium tuberculosis. PLoS ONE, 2009, 4, e7972.	2.5	46
23	From Genome-Based In Silico Predictions to Ex Vivo Verification of Leprosy Diagnosis. Vaccine Journal, 2009, 16, 352-359.	3.1	45
24	BCG Vaccination: A Role for Vitamin D?. PLoS ONE, 2011, 6, e16709.	2.5	44
25	Long-Lived Memory B-Cell Responses following BCG Vaccination. PLoS ONE, 2012, 7, e51381.	2.5	44
26	Mycobacterium tuberculosis PPD-induced immune biomarkers measurable in vitro following BCG vaccination of UK adolescents by multiplex bead array and intracellular cytokine staining. BMC Immunology, 2010, 11, 35.	2.2	40
27	Combination of Cytokine Responses Indicative of Latent TB and Active TB in Malawian Adults. PLoS ONE, 2013, 8, e79742.	2.5	39
28	Differential transcriptomic and metabolic profiles of M. africanum- and M. tuberculosis-infected patients after, but not before, drug treatment. Genes and Immunity, 2015, 16, 347-355.	4.1	35
29	Impact of Co-Infections and BCG Immunisation on Immune Responses among Household Contacts of Tuberculosis Patients in a Ugandan Cohort. PLoS ONE, 2014, 9, e111517.	2.5	30
30	Identification of Immunological Biomarkers Which May Differentiate Latent Tuberculosis from Exposure to Environmental Nontuberculous Mycobacteria in Children. Vaccine Journal, 2014, 21, 133-142.	3.1	30
31	Circulating B-Lymphocytes as Potential Biomarkers of Tuberculosis Infection Activity. PLoS ONE, 2014, 9, e106796.	2.5	29
32	Factors affecting immunogenicity of BCG in infants, a study in Malawi, The Gambia and the UK. BMC Infectious Diseases, 2014, 14, 184.	2.9	27
33	Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania. Tuberculosis, 2015, 95, 170-178.	1.9	24
34	The impact of maternal infection with <i>Mycobacterium tuberculosis</i> on the infant response to bacille Calmette–Guérin immunization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140137.	4.0	23
35	Differences in <scp>T</scp> â€cell responses between <i><scp>M</scp>ycobacterium tuberculosis</i> and <i><scp>M</scp>ycobacterium africanum</i> â€infected patients. European Journal of Immunology, 2014, 44, 1387-1398.	2.9	21
36	Broad heparinâ€binding haemagglutininâ€specific cytokine and chemokine response in infants following Mycobacterium bovis <scp>BCG</scp> vaccination. European Journal of Immunology, 2012, 42, 2511-2522.	2.9	17

#	Article	IF	CITATIONS
37	Diabetes is associated with genotypically drug-resistant tuberculosis. European Respiratory Journal, 2020, 55, 1901891.	6.7	13
38	Presidential address: the role of research networks in tackling major challenges in international health, 2010, 2, 181-185.	2.0	12
39	Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial. Trials, 2015, 16, 149.	1.6	11
40	Variability between countries in cytokine responses to BCG vaccination: what impact might this have on protection?. Expert Review of Vaccines, 2012, 11, 121-124.	4.4	9
41	The Current Status of BCG Vaccination in Young Children in South Korea. Tuberculosis and Respiratory Diseases, 2012, 72, 374.	1.8	9
42	Screening vaccine formulations for biological activity using fresh human whole blood. Human Vaccines and Immunotherapeutics, 2014, 10, 1129-1135.	3.3	9
43	Mycobacterial load affects adenosine deaminase 2 levels of tuberculous pleural effusion. Journal of Infection, 2015, 71, 488-491.	3.3	9
44	Evaluation of cell-mediated immune responses to two BCG vaccination regimes in young children in South Korea. Vaccine, 2011, 29, 6564-6571.	3.8	8
45	A Feasibility Study for Diagnosis of Latent Tuberculosis Infection Using an IGRA Point-of-Care Platform in South Korea. Yonsei Medical Journal, 2019, 60, 375.	2.2	8
46	Real vaccines in the real world: tuberculosis vaccines move south. Expert Review of Vaccines, 2008, 7, 703-707.	4.4	5
47	Leprosy vaccines. Vaccine, 1991, 9, 291-293.	3.8	4
48	Molecular methods for distinguishing between relapse and reinfection in leprosy. Tropical Medicine and International Health, 2008, 13, 1325-1326.	2.3	4
49	A Courageous Step Down the Road toward a New Tuberculosis Vaccine. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 628-629.	5.6	4
50	Diagnostic Potential of a PPE Protein Derived from <i>Mycobacterium tuberculosis </i> Beijing/K Strain. Yonsei Medical Journal, 2020, 61, 789.	2.2	2
51	Reply to Davies et al Journal of Infectious Diseases, 2007, 196, 649-650.	4.0	1
52	Building research capacity through international partnerships. International Health, 2009, 1, 109-110.	2.0	1
53	A New Challenge for the Tuberculosis Vaccine Community?. Journal of Infectious Diseases, 2012, 205, 1029-1031.	4.0	1
54	Another Step Down the Development Pipeline for the Novel Tuberculosis Vaccine MVA-85A. Journal of Infectious Diseases, 2011, 203, 1708-1709.	4.0	0