Sheeja Rajiv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076413/publications.pdf Version: 2024-02-01

SHEELA RAILY

#	Article	IF	CITATIONS
1	Fabrication of poly(3-methylthiophene)/poly(ethylene oxide)/ruthenium oxide composite electrospun nanofibers for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2022, 33, 9558-9569.	2.2	2
2	Electrospun based polythioaniline/polyvinylalcohol/graphene oxide composite nanofibers for supercapacitor application. Ionics, 2021, 27, 2203-2218.	2.4	11
3	Ethylenediamine Functionalized Metalloporphyrin Loaded Nanofibrous Membrane: A New Strategic Approach to Air filtration. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2142-2151.	3.7	5
4	Emulsion templated amino functionalised polymeric monolith filter for innovative air purification technology. Journal of Porous Materials, 2020, 27, 939-946.	2.6	2
5	Grafted PEO polymeric ionic liquid nanocomposite electrospun membrane for efficient and stable dye sensitized solar cell. Electrochimica Acta, 2020, 341, 136040.	5.2	32
6	Porous membrane of polyindole and polymeric ionic liquid incorporated PMMA for efficient quasi-solid state dye sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112464.	3.9	19
7	Dye-sensitized solar cells based on an electrospun polymer nanocomposite membrane as electrolyte. New Journal of Chemistry, 2019, 43, 4444-4454.	2.8	20
8	Development of a Twoâ€Tier Fibrous Membrane by Sequential Electrospinning for Effective Air Filtration. Clean - Soil, Air, Water, 2018, 46, 1800099.	1.1	4
9	Tailoring electrospun polymer blend carriers for nutrient delivery in seed coating for sustainable agriculture. Journal of Cleaner Production, 2018, 177, 69-78.	9.3	27
10	Development and Assessment of Electrospun Poly(ε-caprolactone)–Poly(vinylalcohol) Blend Nanofibers for Pest Control in Stored Products. Polymer-Plastics Technology and Engineering, 2017, 56, 1949-1960.	1.9	1
11	Potential Seed Coatings Fabricated from Electrospinning Hexaaminocyclotriphosphazene and Cobalt Nanoparticles Incorporated Polyvinylpyrrolidone for Sustainable Agriculture. ACS Sustainable Chemistry and Engineering, 2017, 5, 146-152.	6.7	29
12	Preparation and characterization of camptothecin-loaded alginate/poly[<i>N</i> -(2-hydroxypropyl) methacrylamide] hydrogel beads for anticancer treatment. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 781-790.	3.4	6
13	Environment friendly synthesis of polyvinylpyrrolidone nanofibers and their potential use as seed coats. New Journal of Chemistry, 2016, 40, 3268-3276.	2.8	37
14	Comparison of preparation and characterization of water-bath collected porous poly L –lactide microfibers and cellulose/silk fibroin based poly L-lactide nanofibers for biomedical applications. Journal of Polymer Research, 2015, 22, 1.	2.4	11
15	In-vitro release of fragrant l-carvone from electrospun poly(ϵ-caprolactone)/wheat cellulose scaffold. Carbohydrate Polymers, 2015, 133, 328-336.	10.2	11
16	Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly ε-caprolactone urethane urea fibers. RSC Advances, 2015, 5, 2249-2257.	3.6	11
17	Preparation and characterization of electrospun curcumin loaded poly(2-hydroxyethyl methacrylate) nanofiber-A biomaterial for multidrug resistant organisms. Journal of Biomedical Materials Research - Part A, 2015, 103, 16-24.	4.0	46
18	Preparation and characterization of ampicillin-incorporated electrospun polyurethane scaffolds for wound healing and infection control. Polymer Engineering and Science, 2015, 55, 541-548.	3.1	49

Sheeja Rajiv

#	Article	IF	CITATIONS
19	Comparison of Nanocomposite Film and Electrospun Nanocomposite Fibers Based on Poly (2-Hydroxy) Tj ETQq1 Technology and Engineering, 2014, 53, 1690-1696.	1 0.78431 1.9	.4 rgBT /Ove 2
20	Biodegradable electrospun nanocomposite fibers based on Poly(2-hydroxy ethyl methacrylate) and bamboo cellulose. Composites Part B: Engineering, 2014, 60, 43-48.	12.0	29
21	<scp>l</scp> â€carvoneâ€loaded nanofibrous membrane as a fragrance delivery system: fabrication, characterization and <i>in vitro</i> study. Flavour and Fragrance Journal, 2014, 29, 334-339.	2.6	11
22	Anticancer activity of starch/poly[N-(2-hydroxypropyl)methacrylamide]: Biomaterial film to treat skin cancer. International Journal of Biological Macromolecules, 2014, 70, 116-123.	7.5	8
23	Curcumin loaded electrospun <i>Bombyx mori</i> silk nanofibers for drug delivery. Polymer International, 2014, 63, 100-105.	3.1	54
24	Biocompatibility studies of electrospun nanofibrous membrane of PLLAâ€₽VA blend. Journal of Applied Polymer Science, 2013, 128, 2840-2846.	2.6	20
25	Development and Characterization of Electrospun Poly(2â€hydroxy ethyl methacrylate) for Tissue Engineering Applications. Advances in Polymer Technology, 2013, 32, .	1.7	4
26	Fabrication of electrospun Poly L-lactide and Curcumin loaded Poly L-lactide nanofibers for drug delivery. Fibers and Polymers, 2012, 13, 823-830.	2.1	40
27	Optimization of process variables for a biosorption of nickel(II) using response surface method. Korean Journal of Chemical Engineering, 2009, 26, 364-370.	2.7	18