Ivana Isgum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076288/publications.pdf

Version: 2024-02-01

34105 34986 10,564 164 52 98 citations h-index g-index papers 168 168 168 12090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. IEEE Transactions on Medical Imaging, 2018, 37, 2514-2525.	8.9	926
2	Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE Transactions on Medical Imaging, 2017, 36, 2536-2545.	8.9	738
3	Automatic Segmentation of MR Brain Images With a Convolutional Neural Network. IEEE Transactions on Medical Imaging, 2016, 35, 1252-1261.	8.9	676
4	A deep learning framework for unsupervised affine and deformable image registration. Medical Image Analysis, 2019, 52, 128-143.	11.6	512
5	Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Transactions on Medical Imaging, 2009, 28, 1000-1010.	8.9	330
6	Deep MR to CT Synthesis Using Unpaired Data. Lecture Notes in Computer Science, 2017, , 14-23.	1.3	320
7	End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network. Lecture Notes in Computer Science, 2017, , 204-212.	1.3	251
8	State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC: Cardiovascular Imaging, 2019, 12, 1549-1565.	5.3	238
9	Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Medical Image Analysis, 2016, 34, 123-136.	11.6	228
10	Automatic Calcium Scoring in Low-Dose Chest CT Using Deep Neural Networks With Dilated Convolutions. IEEE Transactions on Medical Imaging, 2018, 37, 615-625.	8.9	176
11	A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography. IEEE Transactions on Medical Imaging, 2019, 38, 1588-1598.	8.9	172
12	Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Medical Image Analysis, 2019, 53, 142-155.	11.6	170
13	Deep Learning for Multi-task Medical Image Segmentation in Multiple Modalities. Lecture Notes in Computer Science, 2016, , 478-486.	1.3	165
14	Machine learning in cardiovascular magnetic resonance: basic concepts and applications. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 61.	3.3	157
15	Deep learning analysis of the myocardium in coronary CT angiography for identification of patients with functionally significant coronary artery stenosis. Medical Image Analysis, 2018, 44, 72-85.	11.6	154
16	Coronary Artery Calcium Can Predict All-Cause Mortality and Cardiovascular Events on Low-Dose CT Screening for Lung Cancer. American Journal of Roentgenology, 2012, 198, 505-511.	2.2	146
17	CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax, 2011, 66, 782-787.	5.6	142
18	Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols. Radiology, 2020, 295, 66-79.	7.3	140

#	Article	IF	CITATIONS
19	Adaptive local multi-atlas segmentation: Application to the heart and the caudate nucleus. Medical Image Analysis, 2010, 14, 39-49.	11.6	139
20	Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Medical Image Analysis, 2019, 51, 46-60.	11.6	129
21	Identification of Chronic Obstructive Pulmonary Disease in Lung Cancer Screening Computed Tomographic Scans. JAMA - Journal of the American Medical Association, 2011, 306, 1775-81.	7.4	123
22	Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatric Research, 2018, 83, 102-110.	2.3	118
23	Comparing coronary artery calcium and thoracic aorta calcium for prediction of all-cause mortality and cardiovascular events on low-dose non-gated computed tomography in a high-risk population of heavy smokers. Atherosclerosis, 2010, 209, 455-462.	0.8	117
24	Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 2021, 298, E18-E28.	7.3	116
25	Automatic Coronary Calcium Scoring in Low-Dose Chest Computed Tomography. IEEE Transactions on Medical Imaging, 2012, 31, 2322-2334.	8.9	112
26	Cystatin C and Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 934-945.	2.8	109
27	Brain Volumes at Term-Equivalent Age in Preterm Infants: Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age. Journal of Pediatrics, 2016, 172, 88-95.	1.8	102
28	MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network. International Journal of Radiation Oncology Biology Physics, 2018, 102, 801-812.	0.8	102
29	Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and myocardial infarction. Atherosclerosis, 2013, 228, 400-405.	0.8	100
30	Brain tissue volumes in preterm infants: prematurity, perinatal risk factors and neurodevelopmental outcome: A systematic review. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 89-100.	1.5	98
31	Automatic Coronary Calcium Scoring in Non-Contrast-Enhanced ECG-Triggered Cardiac CT With Ambiguity Detection. IEEE Transactions on Medical Imaging, 2015, 34, 1867-1878.	8.9	96
32	ConvNet-Based Localization of Anatomical Structures in 3-D Medical Images. IEEE Transactions on Medical Imaging, 2017, 36, 1470-1481.	8.9	94
33	Automated Coronary Artery Calcification Scoring in Non-Gated Chest CT: Agreement and Reliability. PLoS ONE, 2014, 9, e91239.	2.5	90
34	Lung Cancer Screening CT-Based Prediction of CardiovascularÂEvents. JACC: Cardiovascular Imaging, 2013, 6, 899-907.	5.3	89
35	Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin inÂMRI. NeuroImage: Clinical, 2018, 17, 251-262.	2.7	88
36	Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge. Medical Image Analysis, 2015, 20, 135-151.	11.6	85

#	Article	IF	CITATIONS
37	Perioperative neonatal brain injury is associated with worse schoolâ€age neurodevelopment in children with critical congenital heart disease. Developmental Medicine and Child Neurology, 2018, 60, 1052-1058.	2.1	84
38	Direct Automatic Coronary Calcium Scoring in Cardiac and Chest CT. IEEE Transactions on Medical Imaging, 2019, 38, 2127-2138.	8.9	82
39	Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Medical Physics, 2007, 34, 1450-1461.	3.0	81
40	Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. European Radiology, 2019, 29, 2350-2359.	4.5	73
41	Automatic segmentation of MR brain images of preterm infants using supervised classification. NeuroImage, 2015, 118, 628-641.	4.2	71
42	Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Transactions on Medical Imaging, 2020, 39, 4011-4022.	8.9	70
43	Feasibility and Safety of Erythropoietin for Neuroprotection after Perinatal Arterial Ischemic Stroke. Journal of Pediatrics, 2014, 164, 481-486.e2.	1.8	67
44	Predominance of Nonatherosclerotic Internal Elastic Lamina Calcification in the Intracranial Internal Carotid Artery. Stroke, 2016, 47, 221-223.	2.0	65
45	Diagnosis of chronic obstructive pulmonary disease in lung cancer screening Computed Tomography scans: independent contribution of emphysema, air trapping and bronchial wall thickening. Respiratory Research, 2013, 14, 59.	3.6	63
46	An evaluation of automatic coronary artery calcium scoring methods with cardiac CT using the orCaScore framework. Medical Physics, 2016, 43, 2361-2373.	3.0	63
47	Patent Ductus Arteriosus and Brain Volume. Pediatrics, 2016, 137, .	2.1	61
48	Development of Cortical Morphology Evaluated with Longitudinal MR Brain Images of Preterm Infants. PLoS ONE, 2015, 10, e0131552.	2.5	60
49	Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI. PLoS ONE, 2013, 8, e81895.	2.5	59
50	Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neurolmage, 2016, 142, 301-310.	4.2	58
51	Early Identification of Small Airways Disease on Lung Cancer Screening CT: Comparison of Current Air Trapping Measures. Lung, 2012, 190, 629-633.	3. 3	56
52	Hydrocortisone Treatment for Bronchopulmonary Dysplasia and Brain Volumes in Preterm Infants. Journal of Pediatrics, 2013, 163, 666-671.e1.	1.8	56
53	Coronary Calcification: Effect of Small Variation of Scan Starting Position on Agatston, Volume, and Mass Scores. Radiology, 2008, 246, 90-98.	7.3	55
54	Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis. Circulation: Cardiovascular Genetics, 2016, 9, 511-520.	5.1	54

#	Article	IF	CITATIONS
55	Quantification of coronary artery calcium in nongated CT to predict cardiovascular events in male lung cancer screening participants: Results of the NELSON study. Journal of Cardiovascular Computed Tomography, 2015, 9, 50-57.	1.3	52
56	Coronary Artery Calcification Scoring in Low-Dose Ungated CT Screening for Lung Cancer: Interscan Agreement. American Journal of Roentgenology, 2010, 194, 1244-1249.	2.2	51
57	Effects of Posthemorrhagic Ventricular Dilatation in the Preterm InfantÂonÂBrain Volumes and White Matter Diffusion Variables atÂTerm-Equivalent Age. Journal of Pediatrics, 2016, 168, 41-49.e1.	1.8	51
58	Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. European Radiology, 2015, 25, 132-139.	4.5	49
59	Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. Journal of Nuclear Cardiology, 2018, 25, 2133-2142.	2.1	49
60	Delayed cortical gray matter development in neonates with severe congenital heart disease. Pediatric Research, 2016, 80, 668-674.	2.3	48
61	Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 1399-1413.	6.4	45
62	Automatic detection of calcifications in the aorta from CT scans of the abdomen1. Academic Radiology, 2004, 11, 247-257.	2.5	41
63	Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Medical Image Analysis, 2012, 16, 50-62.	11.6	41
64	Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey. Frontiers in Cardiovascular Medicine, 2019, 6, 172.	2.4	41
65	Etidronate halts systemic arterial calcification in pseudoxanthoma elasticum. Atherosclerosis, 2020, 292, 37-41.	0.8	40
66	2D image classification for 3D anatomy localization: employing deep convolutional neural networks. Proceedings of SPIE, 2016, , .	0.8	39
67	Assessment of Brain Injury and Brain Volumes after Posthemorrhagic Ventricular Dilatation: A Nested Substudy of the Randomized Controlled ELVIS Trial. Journal of Pediatrics, 2019, 208, 191-197.e2.	1.8	39
68	Artificial Intelligence in Cardiovascular Imaging for Risk Stratification in Coronary Artery Disease. Radiology: Cardiothoracic Imaging, 2021, 3, e200512.	2.5	39
69	Association of Chronic Obstructive Pulmonary Disease and Smoking Status With Bone Density and Vertebral Fractures in Male Lung Cancer Screening Participants. Journal of Bone and Mineral Research, 2014, 29, 2224-2229.	2.8	36
70	Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease. Lecture Notes in Computer Science, 2017, , 95-102.	1.3	36
71	Automated aortic calcium scoring on lowâ€dose chest computed tomography. Medical Physics, 2010, 37, 714-723.	3.0	35
72	Identification of Risk of Cardiovascular Disease by Automatic Quantification of Coronary Artery Calcifications on Radiotherapy Planning CT Scans in Patients With Breast Cancer. JAMA Oncology, 2021, 7, 1024.	7.1	35

#	Article	IF	CITATIONS
73	Automatic Coronary Calcium Scoring in Cardiac CT Angiography Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2015, , 589-596.	1.3	35
74	Automatic Coronary Artery Calcium Scoring on Radiotherapy Planning CT Scans of Breast Cancer Patients: Reproducibility and Association with Traditional Cardiovascular Risk Factors. PLoS ONE, 2016, 11, e0167925.	2.5	35
75	Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. , 2016, , .		32
76	Brain and CSF Volumes in Fetuses and Neonates with Antenatal Diagnosis of Critical Congenital Heart Disease: A Longitudinal MRI Study. American Journal of Neuroradiology, 2019, 40, 885-891.	2.4	32
77	Deep learning from dualâ€energy information for wholeâ€heart segmentation in dualâ€energy and singleâ€energy nonâ€contrastâ€enhanced cardiac CT. Medical Physics, 2020, 47, 5048-5060.	3.0	29
78	Automatic segmentation with detection of local segmentation failures in cardiac MRI. Scientific Reports, 2020, 10, 21769.	3.3	29
79	Automatic quantification of calcifications in the coronary arteries and thoracic aorta on radiotherapy planning CT scans of Western and Asian breast cancer patients. Radiotherapy and Oncology, 2018, 127, 487-492.	0.6	28
80	Generative Adversarial Networks: A Primer for Radiologists. Radiographics, 2021, 41, 840-857.	3.3	28
81	Relationship between myocardial bridges and reduced coronary atherosclerosis in patients with angina pectoris. International Journal of Cardiology, 2013, 167, 883-888.	1.7	27
82	Discriminating dominant computed tomography phenotypes in smokers without or with mild COPD. Respiratory Medicine, 2014, 108, 136-143.	2.9	26
83	Submillisievert coronary calcium quantification using model-based iterative reconstruction: A within-patient analysis. European Journal of Radiology, 2016, 85, 2152-2159.	2.6	26
84	Computed tomographic findings in subjects who died from respiratory disease in the National Lung Screening Trial. European Respiratory Journal, 2017, 49, 1601814.	6.7	26
85	Prediction of cognitive and motor outcome of preterm infants based on automatic quantitative descriptors from neonatal MR brain images. Scientific Reports, 2017, 7, 2163.	3.3	25
86	Sex Differences in Coronary Artery and Thoracic Aorta Calcification and Their Association With Cardiovascular Mortality in Heavy Smokers. JACC: Cardiovascular Imaging, 2019, 12, 1808-1817.	5.3	25
87	Coronary calcium scoring with partial volume correction in anthropomorphic thorax phantom and screening chest CT images. PLoS ONE, 2018, 13, e0209318.	2.5	23
88	Application and Translation of Artificial Intelligence to Cardiovascular Imaging in Nuclear Medicine and Noncontrast CT. Seminars in Nuclear Medicine, 2020, 50, 357-366.	4.6	23
89	Deep convolutional neural networks for automatic coronary calcium scoring in a screening study with low-dose chest CT. Proceedings of SPIE, 2016, , .	0.8	22
90	Severe retinopathy of prematurity is associated with reduced cerebellar and brainstem volumes at term and neurodevelopmental deficits at 2 years. Pediatric Research, 2018, 83, 818-824.	2.3	22

#	Article	IF	CITATIONS
91	Computed Tomography of Aortic Wall Calcifications in Aortic Dissection Patients. PLoS ONE, 2014, 9, e102036.	2.5	22
92	Artificial intelligence: improving the efficiency of cardiovascular imaging. Expert Review of Medical Devices, 2020, 17, 565-577.	2.8	20
93	Routine Echocardiography and Artificial Intelligence Solutions. Frontiers in Cardiovascular Medicine, 2021, 8, 648877.	2.4	20
94	Artificial intelligence in cardiovascular CT: Current status and future implications. Journal of Cardiovascular Computed Tomography, 2021, 15, 462-469.	1.3	20
95	Cardiac valve calcifications on low-dose unenhanced ungated chest computed tomography: inter-observer and inter-examination reliability, agreement and variability. European Radiology, 2014, 24, 1557-1564.	4.5	18
96	Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants. Pediatric Research, 2018, 83, 834-842.	2.3	18
97	Automatic segmentation of thoracic aorta segments in low-dose chest CT., 2018,,.		18
98	Serum Lipid Levels, Body Mass Index, and Their Role in Coronary Artery Calcification. Circulation: Cardiovascular Genetics, 2015, 8, 327-333.	5.1	17
99	Bragatston study protocol: a multicentre cohort study on automated quantification of cardiovascular calcifications on radiotherapy planning CT scans for cardiovascular risk prediction in patients with breast cancer. BMJ Open, 2019, 9, e028752.	1.9	16
100	Prognostic value of heart valve calcifications for cardiovascular events in a lung cancer screening population. International Journal of Cardiovascular Imaging, 2015, 31, 1243-1249.	1.5	15
101	Adversarial Optimization for Joint Registration and Segmentation in Prostate CT Radiotherapy. Lecture Notes in Computer Science, 2019, , 366-374.	1.3	15
102	Adaptive local multi-atlas segmentation: application to heart segmentation in chest CT scans. , 2008, , .		14
103	Automatic neonatal brain tissue segmentation with MRI. Proceedings of SPIE, 2013, , .	0.8	14
104	Automatic quantification of ischemic injury on diffusion-weighted MRI of neonatal hypoxic ischemic encephalopathy. NeuroImage: Clinical, 2017, 14, 222-232.	2.7	14
105	Calcium scoring with prospectively ECG-triggered CT: Using overlapping datasets generated with MPR decreases inter-scan variability. European Journal of Radiology, 2011, 80, 83-88.	2.6	13
106	Variation in quantitative CT air trapping in heavy smokers on repeat CT examinations. European Radiology, 2012, 22, 2710-2717.	4. 5	13
107	Early human brain development: insights into macroscale connectome wiring. Pediatric Research, 2018, 84, 829-836.	2.3	13
108	The amount of calcifications in pseudoxanthoma elasticum patients is underestimated in computed tomographic imaging; a post-mortem correlation of histological and computed tomographic findings in two cases. Insights Into Imaging, 2018, 9, 493-498.	3.4	13

#	Article	IF	CITATIONS
109	Diagnostic Performance of On-Site Coronary CT Angiography–derived Fractional Flow Reserve Based on Patient-specific Lumped Parameter Models. Radiology: Cardiothoracic Imaging, 2019, 1, e190036.	2.5	13
110	Two-dimensional ultrasound measurements vs. magnetic resonance imaging-derived ventricular volume of preterm infants with germinal matrix intraventricular haemorrhage. Pediatric Radiology, 2020, 50, 234-241.	2.0	12
111	Untangling and segmenting the small intestine in 3D cine-MRI using deep learning. Medical Image Analysis, 2022, 78, 102386.	11.6	12
112	Automated calcium scores collected during myocardial perfusion imaging improve identification of obstructive coronary artery disease. IJC Heart and Vasculature, 2020, 26, 100434.	1.1	11
113	High levels of osteoprotegerin are associated with coronary artery calcification in patients suspected of a chronic coronary syndrome. Scientific Reports, 2021, 11, 18946.	3.3	10
114	Pulmonary function and CT biomarkers as risk factors for cardiovascular events in male lung cancer screening participants: the NELSON study. European Radiology, 2015, 25, 65-71.	4.5	9
115	The prognostic value of automated coronary calcium derived by a deep learning approach on non-ECG gated CT images from 82Rb-PET/CT myocardial perfusion imaging. International Journal of Cardiology, 2021, 329, 9-15.	1.7	9
116	Al-Based Quantification of Planned Radiation Therapy Dose to Cardiac Structures and Coronary Arteries in Patients With Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2022, 112, 611-620.	0.8	9
117	Al-Based Radiation Dose Quantification for Estimation of Heart Disease Risk in Breast Cancer Survivors After Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2022, 112, 621-632.	0.8	9
118	Knowledge distillation with ensembles of convolutional neural networks for medical image segmentation. Journal of Medical Imaging, 2022, 9, .	1.5	9
119	Impact of Cardiovascular Calcifications on the Detrimental Effect of Continued Smoking on Cardiovascular Risk in Male Lung Cancer Screening Participants. PLoS ONE, 2013, 8, e66484.	2.5	8
120	Combining pulmonary and cardiac computed tomography biomarkers for disease-specific risk modelling in lung cancer screening. European Respiratory Journal, 2021, 58, 2003386.	6.7	8
121	Deep learning-based whole-heart segmentation in 4D contrast-enhanced cardiac CT. Computers in Biology and Medicine, 2022, 142, 105191.	7.0	8
122	Calcium at the carotid siphon as an indicator of internal carotid artery stenosis. European Radiology, 2013, 23, 1478-1486.	4.5	7
123	An automatic machine learning system for coronary calcium scoring in clinical non-contrast enhanced, ECG-triggered cardiac CT. Proceedings of SPIE, 2014, , .	0.8	7
124	Mild cerebellar injury does not significantly affect cerebral white matter microstructural organization and neurodevelopmental outcome in a contemporary cohort of preterm infants. Pediatric Research, 2018, 83, 1004-1010.	2.3	7
125	The Association Between Marital Status, Coronary Computed Tomography Imaging Biomarkers, and Mortality in a Lung Cancer Screening Population. Journal of Thoracic Imaging, 2020, 35, 204-209.	1.5	7
126	Deep Learning–Quantified Calcium Scores for Automatic Cardiovascular Mortality Prediction at Lung Screening Low-Dose CT. Radiology: Cardiothoracic Imaging, 2021, 3, e190219.	2.5	7

#	Article	IF	CITATIONS
127	Direct prediction of cardiovascular mortality from low-dose chest CT using deep learning., 2019,,.		7
128	Automatic segmentation of the preterm neonatal brain with MRI using supervised classification. Proceedings of SPIE, 2013, , .	0.8	6
129	Combined pixel classification and atlas-based segmentation of the ventricular system in brain CT Images. Proceedings of SPIE, 2013, , .	0.8	6
130	Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images. Proceedings of SPIE, 2015, , .	0.8	6
131	Knowledgeâ€based and deep learningâ€based automated chest wall segmentation in magnetic resonance images of extremely dense breasts. Medical Physics, 2019, 46, 4405-4416.	3.0	6
132	Deep learning: Generative adversarial networks and adversarial methods., 2020,, 547-574.		6
133	Impact of automatically detected motion artifacts on coronary calcium scoring in chest computed tomography. Journal of Medical Imaging, 2018, 5, 1.	1.5	6
134	Unmyelinated White Matter Loss in the Preterm Brain Is Associated with Early Increased Levels of End-Tidal Carbon Monoxide. PLoS ONE, 2014, 9, e89061.	2.5	5
135	Application of speCtraL computed tomogrAphy to impRove specIficity of cardiac compuTed tomographY (CLARITY study): rationale and design. BMJ Open, 2019, 9, e025793.	1.9	5
136	Multifocal cardiovascular calcification in patients with established cardiovascular disease; prevalence, risk factors, and relation with recurrent cardiovascular disease. IJC Heart and Vasculature, 2020, 27, 100499.	1.1	5
137	Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images. , 2018, , .		5
138	Scan-based competing death risk model for re-evaluating lung cancer computed tomography screening eligibility. European Respiratory Journal, 2022, 59, 2101613.	6.7	5
139	Autoencoding low-resolution MRI for semantically smooth interpolation of anisotropic MRI. Medical Image Analysis, 2022, 78, 102393.	11.6	5
140	Radiography and Computed Tomography Detection of Intimal and Medial Calcifications in Leg Arteries in Comparison to Histology. Journal of Personalized Medicine, 2022, 12, 711.	2.5	5
141	Automatic online quality control of synthetic CTs. , 2020, , .		4
142	Coronary artery calcium scoring: can we do better?., 2020,,.		4
143	Early detection of obstructive coronary artery disease in the asymptomatic high-risk population: objectives and study design of the EARLY-SYNERGY trial. American Heart Journal, 2022, 246, 166-177.	2.7	4
144	Automatic detection of calcifications in the aorta from abdominal CT scans. International Congress Series, 2003, 1256, 1037-1042.	0.2	3

#	Article	IF	Citations
145	A pattern recognition approach to automated coronary calcium scoring. , 2004, , .		3
146	Automatic machine learning based prediction of cardiovascular events in lung cancer screening data. Proceedings of SPIE, 2015 , , .	0.8	3
147	Classification of coronary artery calcifications according to motion artifacts in chest CT using a convolutional neural network. Proceedings of SPIE, 2017, , .	0.8	3
148	Cardiovascular Diseases. , 2019, , 167-185.		3
149	Generative models for reproducible coronary calcium scoring. Journal of Medical Imaging, 2022, 9, .	1.5	3
150	Assessment of quantitative cortical biomarkers in the developing brain of preterm infants. Proceedings of SPIE, 2013, , .	0.8	2
151	Automatic detection of cardiovascular risk in CT attenuation correction maps in Rb-82 PET/CTs. Proceedings of SPIE, 2016, , .	0.8	2
152	Deep Group-Wise Variational Diffeomorphic Image Registration. Lecture Notes in Computer Science, 2020, , 155-164.	1.3	2
153	Deep-Learning-Based Thrombus Localization and Segmentation in Patients with Posterior Circulation Stroke. Diagnostics, 2022, 12, 1400.	2.6	2
154	Automatic coronary calcium scoring in low-dose non-ECG-synchronized thoracic CT scans. Proceedings of SPIE, 2010, , .	0.8	1
155	Automatic Segmentation of Perinatal Arterial Ischemic Stroke Volume. Pediatric Research, 2011, 70, 155-155.	2.3	1
156	Implicit surface registration with surface-oriented anisotropic deformation field smoothing. , 2013, , .		1
157	Cardiovascular disease prediction: do pulmonary disease-related chest CT features have added value?. European Radiology, 2015, 25, 1646-1654.	4.5	1
158	Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?. , 0, .		1
159	Elastic Demons: Characterizing Cortical Development in Neonates Using an Implicit Surface Registration. Lecture Notes in Computer Science, 2012, , 38-49.	1.3	1
160	Indefinite Gray-White Matter Border on MRI at Term Equivalent Age in Preterm Infants with White Matter Injury. Pediatric Research, 2011, 70, 156-156.	2.3	0
161	Genome-wide association study of coronary and aortic calcification in lung cancer screening CT. Proceedings of SPIE, 2016, , .	0.8	0
162	Convolutional Neural Network-Based Regression for Quantification of Brain Characteristics Using MRI. Advances in Intelligent Systems and Computing, 2019, , 577-586.	0.6	0

#	Article	IF	CITATIONS
163	Coronary artery calcifications on breast cancer radiotherapy planning CT scans and cardiovascular risk: What do patients want to know?. International Journal of Cardiology Cardiovascular Risk and Prevention, 2021, 11, 200113.	1.1	О
164	Generative adversarial network for coronary artery plaque synthesis in coronary CT angiography. , 2022, , .		0