
Luiz Mario de Matos Jorge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076139/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiphysics simulation and characterisation of parboiling of long grain rice during hydration. Journal of Cereal Science, 2022, 103, 103391.	1.8	5
2	Fractional calculus to control transport phenomena in food engineering: A systematic review of barriers and data agenda. Journal of Food Process Engineering, 2022, 45, .	1.5	2
3	Techno-economic Assessment of Syngas Production from Sugarcane Vinasse Compared to the Natural Gas Route: A Biorefinery Concept. Waste and Biomass Valorization, 2021, 12, 699-710.	1.8	5
4	A novel kinetic model applied to heterogeneous fatty acid deoxygenation. Chemical Engineering Science, 2021, 230, 116192.	1.9	7
5	Effect of intermittent drying on the energy consumption and physiological quality of soybean seeds. Journal of Food Processing and Preservation, 2021, 45, e15188.	0.9	3
6	Deoxygenation of vegetable oils for the production of renewable diesel: Improved aerogel based catalysts. Fuel, 2021, 290, 119979.	3.4	15
7	Effect of the addition of cassava fibers on the properties of cassava starch composite films. Brazilian Journal of Chemical Engineering, 2021, 38, 341-349.	0.7	10
8	Development of active cassava starch films reinforced with waste from industrial wine production and enriched with pink pepper extract. Journal of Applied Polymer Science, 2021, 138, 50922.	1.3	4
9	Statistical optimization of the composition of CuO–ZnO/Al2O3 catalysts for methanol steam reforming. Brazilian Journal of Chemical Engineering, 2021, 38, 523-548.	0.7	1
10	Modelling of bioactive components extraction from corn seeds. Chemical Engineering Research and Design, 2021, 175, 339-347.	2.7	7
11	Análise cienciométrica da integração energética em biorrefinarias de cana-de-açúcar. Revista Brasileira De Gestão Ambiental E Sustentabilidade, 2021, 8, 1621-1631.	0.0	0
12	Addition of grape pomace in the hydration step of parboiling increases the antioxidant properties of rice. International Journal of Food Science and Technology, 2020, 55, 2370-2380.	1.3	16
13	Development of active cassava starch cellulose nanofiberâ€based films incorporated with natural antimicrobial tea tree essential oil. Journal of Applied Polymer Science, 2020, 137, 48726.	1.3	33
14	The impact of periodic operation on barley hydration. Journal of Food Process Engineering, 2020, 43, e13326.	1.5	5
15	Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International Journal of Biological Macromolecules, 2020, 163, 1421-1432.	3.6	40
16	Effects of reaction parameters on the deoxygenation of soybean oil for the sustainable production of hydrocarbons. Environmental Progress and Sustainable Energy, 2020, 39, e13450.	1.3	14
17	Gluten free edible film based on rice flour reinforced by guabiroba (<i>Campomanesia) Tj ETQq1 1 0.784314 rgBT</i>	/Oyerlock 1.3	10 Tf 50 10
18	A Semiâ€Empirical Model for Mass Transfer in Carbohydrate Polymers: A Case of Native Cassava Starch Hydration Kinetic in Hot Water Media. Starch/Staerke, 2020, 72, 1900308.	1.1	2

2

#	Article	IF	CITATIONS
19	Dimethyl Ether Production from Sugarcane Vinasse: Modeling and Simulation for a Techno-economic Assessment. Bioenergy Research, 2020, 13, 397-410.	2.2	9
20	Intensification of the triticale (× triticosecale Wittmac) hydration process using periodic operation. Journal of Food Process Engineering, 2020, 43, e13421.	1.5	4
21	Characterization of different sugarcane bagasse ashes generated for preparation and application as green products in civil construction. Clean Technologies and Environmental Policy, 2019, 21, 1687-1698.	2.1	6
22	Ultrasound assisted hydration improves the quality of the malt barley. Journal of Food Process Engineering, 2019, 42, e13208.	1.5	12
23	Modeling of maceration step of the oat (Avena sativa) malting process. Journal of Food Process Engineering, 2019, 42, e13266.	1.5	2
24	Production and characterization of starchâ€based films reinforced by ramie nanofibers (<i>Boehmeria) Tj ETQq(</i>	0 0 0 rgBT	/Overlock 10
25	Kinetic modeling of sugarcane juice clarification by ozonation in batch reactor with ozone saturation control. Food Science and Technology, 2019, 39, 81-84.	0.8	6
26	Modeling and thermodynamic properties of soybean cultivar BRS257 hydration. Journal of Food Process Engineering, 2019, 42, e12970.	1.5	5
27	Wheat hydration process intensification by periodic operation. Journal of Food Engineering, 2019, 246, 153-159.	2.7	10
28	Mathematical modeling of wheat hydration: Process and starch properties. Journal of Food Process Engineering, 2019, 42, e12936.	1.5	11
29	Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films. Journal of Applied Polymer Science, 2019, 136, 47224.	1.3	19
30	Thermodynamic properties of barley hydration process and its thermostability. Journal of Food Process Engineering, 2019, 42, e12964.	1.5	6
31	The fractional calculus in studies on drying: A new kinetic semiâ€empirical model for drying. Journal of Food Process Engineering, 2019, 42, e12955.	1.5	10
32	Self-compacting mortar with sugarcane bagasse ash: development of a sustainable alternative for Brazilian civil construction. Environment, Development and Sustainability, 2019, 21, 2125-2143.	2.7	12
33	Study of the compressive and tensile strenghts of self-compacting concrete with sugarcane bagasse ash. Revista IBRACON De Estruturas E Materiais, 2019, 12, 874-883.	0.3	6
34	CHARACTERIZATION-PERFORMANCE OF ZnO AND ZnO/ZnFe2O4 CATALYST USING ARTIFICIAL AND SOLAR LIGHT FOR MERCURY (II) REDUCTION. Brazilian Journal of Chemical Engineering, 2019, 36, 797-810.	0.7	1
35	Multi-objective optimization of an industrial ethanol distillation system for vinasse reduction – A case study. Journal of Cleaner Production, 2018, 183, 956-963.	4.6	18
36	Mathematical modeling and thermodynamic properties of rice parboiling. Journal of Food Process Engineering, 2018, 41, e12691.	1.5	12

Luiz Mario de Matos Jorge

#	Article	IF	CITATIONS
37	Evaluation of water diffusivity in wheat hydration (<i>Triticum</i> spp): Isothermal and periodic operation. Journal of Food Process Engineering, 2018, 41, e12683.	1.5	12
38	Modeling the hydration step of the rice (Oryza sativa) parboiling process. Journal of Food Engineering, 2018, 216, 81-89.	2.7	41
39	Generalization of a lumped parameters model using fractional derivatives applied to rice hydration. Journal of Food Process Engineering, 2018, 41, e12641.	1.5	5
40	Mathematical modeling of soybean drying by a fractionalâ€order kinetic model. Journal of Food Process Engineering, 2018, 41, e12655.	1.5	14
41	Mathematical modeling of paddy (Oryza sativa) hydration in different thermal conditions assisted by Raman spectroscopy. Journal of Cereal Science, 2018, 79, 390-398.	1.8	17
42	Parboiled Rice and Parboiling Process. Food Engineering Reviews, 2018, 10, 165-185.	3.1	18
43	Optimization study of soybean intermittent drying in fixed-bed drying technology. Drying Technology, 2017, 35, 125-137.	1.7	20
44	Effects of variable diffusivity on soybean hydration modelling as a Stefan problem. Canadian Journal of Chemical Engineering, 2017, 95, 1004-1013.	0.9	5
45	Modeling rice and corn hydration kinetic by Nicolin–Jorge model. Journal of Food Process Engineering, 2017, 40, e12588.	1.5	9
46	Kinetic modeling and thermodynamic properties of soybean cultivar (BRS257) during hydration process. Journal of Food Process Engineering, 2017, 40, e12579.	1.5	28
47	Utilization of solâ€gel CuOâ€ZnOâ€Al ₂ O ₃ catalysts in the methanol steam reforming for hydrogen production. Canadian Journal of Chemical Engineering, 2017, 95, 2258-2271.	0.9	19
48	Effect of steeping time and temperature on malting process. Journal of Food Process Engineering, 2017, 40, e12519.	1.5	11
49	Synthesis of a New Route for Methanol Production by Syngas Arising from Sugarcane Vinasse. Computer Aided Chemical Engineering, 2017, 40, 811-816.	0.3	2
50	ASSESSMENT OF DRYER PERFORMANCE UNDER INTERMITTENT DRYING OF GRAINS IN FIXED BED. Engevista, 2017, 19, 146.	0.1	1
51	GEOSTATISTICAL MODELS USED IN GRAIN HYDRATION. Engevista, 2017, 19, 648.	0.1	0
52	Study of uncertainty in the fitting of diffusivity of Fick's Second Law of Diffusion with the use of Bootstrap Method. Journal of Food Engineering, 2016, 184, 63-68.	2.7	26
53	A sequential approach for the optimization of truck routes for solid waste collection. Chemical Engineering Research and Design, 2016, 102, 238-250.	2.7	25
54	Chemical properties and water absorption kinetics of transgenic corn grain (2B587 Hx) and its conventional isoline (2B587). Journal of Cereal Science, 2016, 71, 93-98.	1.8	20

#	Article	IF	CITATIONS
55	Comparison of Drying Kinetics of Maize in Oven and in Pilot Silo Dryer: Influence on Moisture Content and Physical Characteristics. International Journal of Food Engineering, 2016, 12, 599-606.	0.7	3
56	Influence of Roasting Temperature of Barley on the Powder Characteristics and Preparation of Tea. Cereal Chemistry, 2016, 93, 20-24.	1.1	5
57	The air temperature modulation impact on the drying of soybeans in a fixed bed. Drying Technology, 2016, 34, 516-529.	1.7	12
58	Photocatalytic degradation of textile reactive dye using artificial neural network modeling approach. Desalination and Water Treatment, 2016, 57, 14132-14144.	1.0	24
59	Assessment of the initial moisture content on soybean drying kinetics and transport properties. Drying Technology, 2016, 34, 360-371.	1.7	21
60	Numerical Solution of a Nonlinear Diffusion Model for Soybean Hydration with Moving Boundary. International Journal of Food Engineering, 2015, 11, 587-595.	0.7	6
61	Moving boundary modeling of conventional and transgenic soybean hydration: Moisture profile and moving front experimental validation. International Journal of Heat and Mass Transfer, 2015, 90, 568-577.	2.5	14
62	Analytical solution and experimental validation of a model for hydration of soybeans with variable mass transfer coefficient. Journal of Food Engineering, 2015, 149, 17-23.	2.7	13
63	SIMULATION AND ANALYSIS OF AN INDUSTRIAL COLUMN SYSTEM OF BIOETHANOL DISTILLATION HEATED BY VAPOR DIRECT INJECTION. Engevista, 2015, 17, 254.	0.1	2
64	MODELAGEM E SIMULAÇÃO DO ABATIMENTO DE CO A BAIXAS E MÉDIAS TEMPERATURAS PARA A APLICAÃ EM UMA CÉLULA A COMBUSTÃVEL AUTÔNOMA (MODELING AND SIMULATION TO REMOVAL OF CO BY LOV		0100 rgBT /0
65	MODELING, SIMULATION, AND VALIDATION OF AN ELECTRIC HEATER MODEL OPERATING IN THE TRANSIENT REGIME. Engevista, 2015, 17, 421.	0.1	0
66	Hydration kinetics, physicochemical composition, and textural changes of transgenic corn kernels of flint, semi-flint, and dent varieties. Food Science and Technology, 2014, 34, 88-93.	0.8	19
67	Hydration kinetics of soybeans: Transgenic and conventional cultivars. Journal of Cereal Science, 2014, 60, 584-588.	1.8	19
68	Stefan Problem Approach Applied to the Diffusion Process in Grain Hydration. Transport in Porous Media, 2014, 102, 387-402.	1.2	12
69	Experimental analysis and finite element simulation of the hydration process of barley grains. Journal of Food Engineering, 2014, 131, 44-49.	2.7	28
70	REFINO DE ÓLEOS VEGETAIS UTILIZANDO LAVAGEM ÃCIDA COM RECIRCULAÇÃO. Engevista, 2014, 16, 384.	0.1	1
71	SOYBEAN HYDRATION: INVESTIGATION OF DISTRIBUTED PARAMETER MODELS WITH RESPECT TO SURFACE BOUNDARY CONDITIONS. Chemical Engineering Communications, 2013, 200, 959-976.	1.5	12
72	Kinetic, thermodynamic properties, and optimization of barley hydration. Food Science and Technology, 2013, 33, 690-698.	0.8	46

#	Article	IF	CITATIONS
73	Experimental and numerical analysis of soybean meal drying in fluidized bed. Powder Technology, 2012, 229, 61-70.	2.1	26
74	Hsu model analysis considering grain volume variation during soybean hydration. Journal of Food Engineering, 2012, 111, 496-504.	2.7	19
75	Modeling of drying and adsorption isotherms of the fish feed. Brazilian Archives of Biology and Technology, 2011, 54, 577-588.	0.5	7
76	Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver. Brazilian Journal of Chemical Engineering, 2011, 28, 393-402.	0.7	15
77	Modeling, simulation, and analysis of a reactor system for the generation of white liquor of a pulp and paper industry. Brazilian Archives of Biology and Technology, 2011, 54, 197-206.	0.5	5
78	Simulation and analysis of a sugarcane juice evaporation system. Journal of Food Engineering, 2010, 99, 351-359.	2.7	35
79	Dynamic modeling and control of soybean meal drying in a direct rotary dryer. Food and Bioproducts Processing, 2010, 88, 90-98.	1.8	14
80	Modelagem matemática e análise da hidratação de grãos de ervilha. Food Science and Technology, 2009, 29, 12-18.	0.8	30
81	Optimal Production Scheduling for the Sausage Industry. Computer Aided Chemical Engineering, 2009, 27, 717-722.	0.3	Ο
82	Cobalt, nickel and ruthenium-silica based materials synthesized by the sol–gel method. Journal of Non-Crystalline Solids, 2008, 354, 4811-4815.	1.5	9
83	Effect of water losses by evaporation and chemical reaction in an industrial slaker reactor. Brazilian Archives of Biology and Technology, 2007, 50, 339-347.	0.5	1
84	Simulação e análise de um sistema industrial de colunas de destilação de etanol. Acta Scientiarum - Technology, 2007, 29, .	0.4	11
85	Preparation and characterization of nickel based catalysts on silica, alumina and titania obtained by sol–gel method. Journal of Non-Crystalline Solids, 2006, 352, 3697-3704.	1.5	62
86	Evaluation of heat transfer in a catalytic fixed bed reactor at high temperatures. Brazilian Journal of Chemical Engineering, 1999, 16, 407-420.	0.7	12
87	Periodic operation as an alternative to intensify the hydration process of common beans () Tj ETQq1 1 0.784314	⊦rg₿Ţ /Ov	erlock 10 Tf 5