
Michael Brudzinski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8076071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the General Public's Understanding of Rapidly Produced Earthquake Information Products ShakeMap and PAGER. Seismological Research Letters, 2022, 93, 2891-2905.	0.8	4
2	The Induced Mw 5.0 March 2020 West Texas Seismic Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	14
3	Energetic Rupture and Tsunamigenesis during the 2020 MwÂ7.4 La Crucecita, Mexico Earthquake. Seismological Research Letters, 2021, 92, 140-150.	0.8	8
4	Learning in a Crisis: Online Skill Building Workshop Addresses Immediate Pandemic Needs and Offers Possibilities for Future Trainings. Seismological Research Letters, 2021, 92, 3215-3230.	0.8	2
5	Pore Pressure Threshold and Fault Slip Potential for Induced Earthquakes in the Dallasâ€Fort Worth Area of North Central Texas. Geophysical Research Letters, 2021, 48, e2021GL093564.	1.5	20
6	Temporal patterns of induced seismicity in Oklahoma revealed from multi-station template matching. Journal of Seismology, 2020, 24, 921-935.	0.6	14
7	Induced Seismicity in the Delaware Basin, Texas. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018558.	1.4	53
8	Factors Influencing the Probability of Hydraulic Fracturing-Induced Seismicity in Oklahoma. Bulletin of the Seismological Society of America, 2020, 110, 2272-2282.	1.1	22
9	Hydraulic Fracturingâ€Induced Seismicity. Reviews of Geophysics, 2020, 58, e2019RG000695.	9.0	202
10	Challenges in Making Meaning from Groundâ€Motion Visualizations: The Role of Geoscience Knowledge in Interpreting Dynamic Spatiotemporal Patterns. Seismological Research Letters, 2019, , .	0.8	1
11	Hydraulic Fracture Injection Strategy Influences the Probability of Earthquakes in the Eagle Ford Shale Play of South Texas. Geophysical Research Letters, 2019, 46, 12958-12967.	1.5	33
12	Earthquake swarms and slow slip on a sliver fault in the Mexican subduction zone. Proceedings of the United States of America, 2019, 116, 7198-7206.	3.3	17
13	Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review. Acta Geophysica, 2019, 67, 351-364.	1.0	38
14	Evidence for Rupture Through a Double Benioff Zone During the 2017 <i>M</i> _{<i>w</i>} 8.2 Chiapas, Mexico Earthquake. Geophysical Research Letters, 2019, 46, 652-660.	1.5	11
15	Seismicity Induced by Wastewater Injection in Washington County, Ohio: Influence of Preexisting Structure, Regional Stress Regime, and Well Operations. Journal of Geophysical Research: Solid Earth, 2018, 123, 4123-4140.	1.4	7
16	Maturity of nearby faults influences seismic hazard from hydraulic fracturing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1720-E1729.	3.3	60
17	Proximity of Precambrian basement affects the likelihood of induced seismicity in the Appalachian, Illinois, and Williston Basins, central and eastern United States. , 2018, 14, 1365-1379.		59
18	Earthquakes Induced by Hydraulic Fracturing Are Pervasive in Oklahoma. Journal of Geophysical Research: Solid Earth. 2018, 123, 10.918.	1.4	81

MICHAEL BRUDZINSKI

#	Article	IF	CITATIONS
19	Seismicity rate increases associated with slow slip episodes prior to the 2012 Mw 7.4 Ometepec earthquake. Earth and Planetary Science Letters, 2017, 464, 35-45.	1.8	12
20	Lessons learned from the Youngstown, Ohio induced earthquake sequence from January 2011 to January 2012. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9, 783-796.	3.7	10
21	Creation and Assessment of an Active e-Learning Introductory Geology Course. Journal of Science Education and Technology, 2017, 26, 629-645.	2.4	20
22	An efficient repeating signal detector to investigate earthquake swarms. Journal of Geophysical Research: Solid Earth, 2016, 121, 5880-5897.	1.4	30
23	Tectonic tremor and slow slip along the northwestern section of the Mexico subduction zone. Earth and Planetary Science Letters, 2016, 454, 259-271.	1.8	20
24	An efficient repeating signal detector to detect and characterize induced seismicity. , 2016, , .		0
25	New perspective on the transition from flat to steeper subduction in Oaxaca, Mexico, based on seismicity, nonvolcanic tremor, and slow slip. Journal of Geophysical Research: Solid Earth, 2016, 121, 1835-1848.	1.4	21
26	The role of effective normal stress, frictional properties, and convergence rates in characteristics of simulated slow slip events. Geophysical Research Letters, 2015, 42, 1061-1067.	1.5	8
27	Distinguishing induced seismicity from natural seismicity in Ohio: Demonstrating the utility of waveform template matching. Journal of Geophysical Research: Solid Earth, 2015, 120, 6284-6296.	1.4	54
28	Microseismicity Induced by Deep Wastewater Injection in Southern Trumbull County, Ohio. Seismological Research Letters, 2015, 86, 1326-1334.	0.8	24
29	Earthquakes Induced by Hydraulic Fracturing in Poland Township, Ohio. Bulletin of the Seismological Society of America, 2015, 105, 189-197.	1.1	182
30	Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone. Journal of South American Earth Sciences, 2015, 63, 279-292.	0.6	12
31	Regional detection and monitoring of injection-induced seismicity: Application to the 2010–2012 Youngstown, Ohio, seismic sequence. AAPG Bulletin, 2015, 99, 1671-1688.	0.7	17
32	Automated detection and location of tectonic tremor along the entire Cascadia margin from 2005 to 2011. Earth and Planetary Science Letters, 2015, 430, 160-170.	1.8	17
33	GPS constraints on the 2011-2012 Oaxaca slow slip event that preceded the 2012 March 20 Ometepec earthquake, southern Mexico. Geophysical Journal International, 2014, 197, 1593-1607.	1.0	56
34	Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence. Earth and Planetary Science Letters, 2014, 405, 274-280.	1.8	102
35	GPS constraints on the Mw = 7.5 Ometepec earthquake sequence, southern Mexico: coseismic and post-seismic deformation. Geophysical Journal International, 2014, 199, 200-218.	1.0	23
36	Megathrust earthquake swarms indicate frictional changes which delimit large earthquake ruptures. Earth and Planetary Science Letters, 2014, 390, 234-243.	1.8	33

MICHAEL BRUDZINSKI

#	Article	IF	CITATIONS
37	Detecting tectonic tremor through frequency scanning at a single station: Application to the Cascadia margin. Earth and Planetary Science Letters, 2012, 353-354, 134-144.	1.8	11
38	Earthquake swarms in circum-Pacific subduction zones. Earth and Planetary Science Letters, 2011, 305, 215-225.	1.8	69
39	Investigation of Cascadia segmentation with ambient noise tomography. Earth and Planetary Science Letters, 2011, 309, 67-76.	1.8	76
40	Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature, 2010, 467, 828-831.	13.7	96
41	Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow. Earth and Planetary Science Letters, 2010, 297, 627-632.	1.8	67
42	Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip. Journal of Geophysical Research, 2010, 115, .	3.3	116
43	Determination of slow slip episodes and strain accumulation along the Cascadia margin. Journal of Geophysical Research, 2010, 115, .	3.3	28
44	Nonvolcanic tremor along the Oaxaca segment of the Middle America subduction zone. Journal of Geophysical Research, 2010, 115, .	3.3	48
45	Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone. Journal of Geophysical Research, 2010, 115, .	3.3	45
46	Subducting Slab Ultra-Slow Velocity Layer Coincident with Silent Earthquakes in Southern Mexico. Science, 2009, 324, 502-506.	6.0	166
47	Do faults shimmy before they shake?. Nature Geoscience, 2008, 1, 295-296.	5.4	3
48	Segmentation in episodic tremor and slip all along Cascadia. Geology, 2007, 35, 907.	2.0	210
49	Global Prevalence of Double Benioff Zones. Science, 2007, 316, 1472-1474.	6.0	162
50	Repeating earthquakes, episodic tremor and slip: Emerging patterns in complex earthquake cycles?. Complexity, 2007, 12, 33-43.	0.9	4
51	Response to Comment on "The Great Sumatra-Andaman Earthquake of 26 December 2004". Science, 2005, 310, 1431b-1431b.	6.0	7
52	The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 2005, 308, 1127-1133.	6.0	981
53	Earthquakes and strain in subhorizontal slabs. Journal of Geophysical Research, 2005, 110, .	3.3	23
54	Constraining the boundary between the Sunda and Andaman subduction systems: Evidence from the 2002 Mw7.3 Northern Sumatra earthquake and aftershock relocations of the 2004 and 2005 great earthquakes. Geophysical Research Letters, 2005, 32, .	1.5	26

#	ARTICLE	IF	CITATIONS
55	Seismic anisotropy in the mantle transition zone beneath Fiji-Tonga. Geophysical Research Letters, 2003, 30, .	1.5	75
56	A petrologic anomaly accompanying outboard earthquakes beneath Fiji-Tonga: Corresponding evidence from broadbandPandSwaveforms. Journal of Geophysical Research, 2003, 108, .	3.3	50
57	Evidence for a Large-Scale Remnant of Subducted Lithosphere Beneath Fiji. Science, 2001, 292, 2475-2479.	6.0	103
58	Variations inPwave speeds and outboard earthquakes: Evidence for a petrologic anomaly in the mantle transition zone. Journal of Geophysical Research, 2000, 105, 21661-21682.	3.3	33
59	Characterization of Swarm and Mainshock–Aftershock Behavior in Puerto Rico. Seismological Research Letters, 0, , .	0.8	2