Maria C Derosa

List of Publications by Citations

Source: https://exaly.com/author-pdf/8075871/maria-c-derosa-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 3,095 25 55 h-index g-index citations papers 86 3,681 5.75 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
81	Nanotechnology in fertilizers. <i>Nature Nanotechnology</i> , 2010 , 5, 91	28.7	398
80	Microfluidics Integrated Biosensors: A Leading Technology towards Lab-on-a-Chip and Sensing Applications. <i>Sensors</i> , 2015 , 15, 30011-31	3.8	273
79	Challenges and opportunities for small molecule aptamer development. <i>Journal of Nucleic Acids</i> , 2012 , 2012, 748913	2.3	273
78	Iridium luminophore complexes for unimolecular oxygen sensors. <i>Journal of the American Chemical Society</i> , 2004 , 126, 7619-26	16.4	190
77	Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. <i>Frontiers in Chemistry</i> , 2016 , 4, 14	5	177
76	Screening and initial binding assessment of fumonisin b(1) aptamers. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 4864-81	6.3	109
75	In situ biosensing with a surface plasmon resonance fiber grating aptasensor. <i>Analytical Chemistry</i> , 2011 , 83, 7027-34	7.8	103
74	Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation. <i>Analytical Chemistry</i> , 2015 , 87, 8608-12	7.8	100
73	Selection and characterization of a novel DNA aptamer for label-free fluorescence biosensing of ochratoxin A. <i>Toxins</i> , 2014 , 6, 2435-52	4.9	96
72	Retention of function in the DNA homolog of the RNA dopamine aptamer. <i>Biochemical and Biophysical Research Communications</i> , 2009 , 388, 732-5	3.4	92
71	Analysis of In Vitro Aptamer Selection Parameters. <i>Journal of Molecular Evolution</i> , 2015 , 81, 150-61	3.1	91
70	Determination of ochratoxin A in wheat after clean-up through a DNA aptamer-based solid phase extraction column. <i>Food Chemistry</i> , 2011 , 127, 1378-84	8.5	89
69	Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. <i>ACS Sensors</i> , 2020 , 5, 454-463	9.2	67
68	Computational approaches toward the design of pools for the in vitro selection of complex aptamers. <i>Rna</i> , 2010 , 16, 2252-62	5.8	50
67	Preparation of functional aptamer films using layer-by-layer self-assembly. <i>Biomacromolecules</i> , 2009 , 10, 1149-54	6.9	49
66	Smart materials based on DNA aptamers: taking aptasensing to the next level. Sensors, 2014 , 14, 3156-	73 .8	48
65	Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. <i>Nucleic Acid Therapeutics</i> , 2014 , 24, 388-404	4.8	45

(2013-2012)

Aptamer Base: a collaborative knowledge base to describe aptamers and SELEX experiments. Database: the Journal of Biological Databases and Curation, 2012 , 2012, bas006	5	45	
HER2 breast cancer biomarker detection using a sandwich optical fiber assay. <i>Talanta</i> , 2021 , 221, 12145	526.2	45	
Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. <i>Sensors and Actuators B: Chemical</i> , 2016 , 230, 31-39	8.5	38	
An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). <i>Analytical Biochemistry</i> , 2020 , 588, 113471	3.1	35	
Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 124, 115806	14.6	34	•
Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. <i>Nucleic Acid Therapeutics</i> , 2016 , 26, 335-347	4.8	31	
Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations 2015, 25-67		29	
Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. <i>Analytical Biochemistry</i> , 2018 , 559, 17-23	3.1	28	
HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. <i>Biomedical Optics Express</i> , 2020 , 11, 4862-4871	3.5	25	
pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. <i>Pharmaceuticals</i> , 2018 , 11,	5.2	24	
Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection. <i>Journal of AOAC INTERNATIONAL</i> , 2016 , 99, 865-877	1.7	23	
Target binding influences permeability in aptamer-polyelectrolyte microcapsules. <i>Small</i> , 2011 , 7, 1219-7	2 6 1	23	
Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing. <i>ACS Combinatorial Science</i> , 2016 , 18, 302-13	3.9	22	
High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. <i>Sensors and Actuators B: Chemical</i> , 2019 , 287, 595-601	8.5	21	
Development of a bead-based aptamer/antibody detection system for C-reactive protein. <i>Analytical Biochemistry</i> , 2015 , 472, 67-74	3.1	21	
Multimodal plasmonic optical fiber grating aptasensor. <i>Optics Express</i> , 2020 , 28, 7539-7551	3.3	21	
In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. <i>Scientific Reports</i> , 2017 , 7, 14487	4.9	20	
Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. <i>ACS Applied Materials & Description (Communication of Applied Materials & Description of Applied Mate</i>	9.5	20	
	Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical, 2016, 230, 31-39 An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Analytical Biochemistry, 2020, 588, 113471 Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. TrAC - Trends in Analytical Chemistry, 2020, 124, 115806 Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Therapeutics, 2016, 26, 335-347 Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations 2015, 25-67 Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Analytical Biochemistry, 2018, 559, 17-23 HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomedical Optics Express, 2020, 11, 4862-4871 pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals, 2018, 11, Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection. Journal of AOAC INTERNATIONAL, 2016, 99, 865-877 Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small, 2011, 7, 1219- Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing. ACS Combinatorial Science, 2016, 18, 302-13 High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sensors and Actuators B: Chemical, 2019, 287, 595-601 Development of a bead-based aptamer/antibody detection system for C-reactive protein. Analytical Biochemistry, 2015, 472, 67-74 Multimodal plasmonic optical fiber grating aptasensor. Optics Express, 2020, 28, 7539-7551 In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. Scientific Reports, 2017, 7, 14487 Target-molecule-triggered rupture	Aptamer-based sandwich assay for on chip detection of Ochratoxin A by an array of amorphous silicon photosensors. Sensors and Actuators B: Chemical, 2016, 230, 31-39 An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Analytical Biochemistry, 2020, 588, 113471 Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. TAGE—Trends in Analytical Chemistry, 2020, 124, 115806 Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Therapeutics, 2016, 26, 335-347 Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations 2015, 25-67 Label-free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurium. Analytical Biochemistry, 2018, 559, 17-23 HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomedical Optics Express, 2020, 11, 4862-4871 PH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals, 2018, 11, Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection. Journal of AOAC International, 2016, 99, 865-877 Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small, 2011, 7, 1219-261 Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing. ACS Combinatorial Science, 2016, 18, 302-13 High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sensors and Actuators B: Chemical, 2019, 287, 595-601 Development of a bead-based aptamer/antibody detection system for C-reactive protein. Analytical Biochemistry, 2015, 472, 67-74 Multimodal plasmonic optical fiber grating aptasensor. Optics Express, 2020, 28, 7539-7551 3.3 In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. Scientific Reports, 2017, 7, 14487 Target-molecule-triggere	Aptamers- Paromising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Therapeutics, 2016, 235-347 Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations 2015, 25-67 Label-Free aptasensors based on fluorescent screening assays for the detection of Salmonella typhimurum. Analytical Biochemistry, 2018, 539, 17-23 HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. Biomedical Optics Express, 2020, 11, 4862-4871 PH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals, 2016, 99, 865-877 Target binding influences permeability in aptamer-polyelectrolyte microcapsules. Small, 2011, 71, 1219-261 Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Science, 2016, 18, 302-13 In vitro selections of mammaglobin A and mammaglobin B aptamers for the recognition of circulating breast tumor cells. Scientific Reports, 2017, 71, 14487 Target-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS Paraget mammaglobin A and mammaglobin B aptamers for the recognition of circulating processors. ACS Paraget mammaglobin A and mammaglobin B aptamers for the recognition of circulating processors. ACS Paraget-molecule-triggered rupture of aptamer-encapsulated polyelectrolyte microcapsules. ACS

46	Development of a DNA aptamer for direct and selective homocysteine detection in human serum. <i>RSC Advances</i> , 2013 , 3, 24415	3.7	19
45	Synthesis, transfer, and characterization of core-shell gold-coated magnetic nanoparticles. <i>MethodsX</i> , 2019 , 6, 333-354	1.9	18
44	Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia. <i>PLoS ONE</i> , 2011 , 6, e22239	3.7	18
43	In Vivo Use of a Multi-DNA Aptamer-Based Payload/Targeting System To Study Dopamine Dysregulation in the Central Nervous System. <i>ACS Chemical Neuroscience</i> , 2019 , 10, 371-383	5.7	18
42	Comparison of In-Solution Biorecognition Properties of Aptamers against Ochratoxin A. <i>Toxins</i> , 2016 , 8,	4.9	16
41	Lateral flow assays for Ochratoxin A using metal nanoparticles: comparison of "adsorption-desorption" approach to linkage inversion assembled nano-aptasensors (LIANA). Analyst, The, 2018 , 143, 4566-4574	5	15
40	Linkage inversion assembled nano-aptasensors (LIANAs) for turn-on fluorescence detection. <i>Chemical Communications</i> , 2015 , 51, 14346-9	5.8	14
39	In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target. <i>Current Protocols in Chemical Biology</i> , 2017 , 9, 233-268	1.8	14
38	Advances in Medical Imaging: Aptamer- and Peptide-Targeted MRI and CT Contrast Agents. <i>ACS Omega</i> , 2020 , 5, 22691-22701	3.9	14
37	Morphological Transformation of Silver Nanoparticles from Commercial Products: Modeling from Product Incorporation, Weathering through Use Scenarios, and Leaching into Wastewater. <i>Nanomaterials</i> , 2019 , 9,	5.4	13
36	An in solution assay for interrogation of affinity and rational minimer design for small molecule-binding aptamers. <i>Analyst, The</i> , 2015 , 140, 6643-51	5	13
35	Target binding improves relaxivity in aptamer-gadolinium conjugates. <i>Journal of Biological Inorganic Chemistry</i> , 2012 , 17, 1159-75	3.7	13
34	Comparison of turn-on and ratiometric fluorescent G-quadruplex aptasensor approaches for the detection of ATP. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 1319-1330	4.4	13
33	Selective dopamine detection using aptamer-functionalized glassy carbon electrodes. <i>Canadian Journal of Chemistry</i> , 2015 , 93, 572-577	0.9	11
32	Semiconductor properties in an iodine-doped platinum(II) dinuclear complex. <i>Inorganic Chemistry</i> , 2001 , 40, 1406-7	5.1	11
31	DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. <i>Scientific Reports</i> , 2020 , 10, 20917	4.9	11
30	Development of a Biocompatible Layer-by-Layer Film System Using Aptamer Technology for Smart Material Applications. <i>Polymers</i> , 2014 , 6, 1631-1654	4.5	10
29	Iridium(III) complexes as polymer bound oxygen sensors. <i>Macromolecular Symposia</i> , 2003 , 196, 235-248	0.8	10

28	Outlook for aptamers after twenty five years. Current Topics in Medicinal Chemistry, 2015, 15, 1153-9	3	9
27	Status and Prospects of Aptamers as Drug Components. <i>BioDrugs</i> , 2015 , 29, 151-65	7.9	8
26	Envisioning the scientific paper of the future. <i>Facets</i> , 2020 , 5, 1-16	2.3	8
25	Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2021 , 13, 9412-9424	9.5	6
24	An In-Silico Pipeline for Rapid Screening of DNA Aptamers against Mycotoxins: The Case-Study of Fumonisin B1, Aflatoxin B1 and Ochratoxin A. <i>Polymers</i> , 2020 , 12,	4.5	5
23	Personalized Medicine for Crops? Opportunities for the Application of Molecular Recognition in Agriculture. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6457-6461	5.7	5
22	A review of Cryptosporidium spp. and their detection in water. <i>Water Science and Technology</i> , 2021 , 83, 1-25	2.2	5
21	Overview and emerging trends in optical fiber aptasensing. <i>Biosensors and Bioelectronics</i> , 2022 , 196, 113694	11.8	5
20	Highly sensitive magnetic-microparticle-based aptasensor for Cryptosporidium parvum oocyst detection in river water and wastewater: Effect of truncation on aptamer affinity. <i>Talanta</i> , 2021 , 222, 121618	6.2	5
19	Impact of anaerobically digested silver and copper oxide nanoparticles in biosolids on soil characteristics and bacterial community. <i>Chemosphere</i> , 2021 , 263, 128173	8.4	5
18	Development and Evaluation of a Quantitative Fluorescent Lateral Flow Immunoassay for Cystatin-C, a Renal Dysfunction Biomarker. <i>Sensors</i> , 2021 , 21,	3.8	4
17	Aptamer-Modified Ultrastable Gold Nanoparticles for Dopamine Detection. <i>IEEE Sensors Journal</i> , 2021 , 21, 2517-2525	4	3
16	Polymer Brush-GaAs Interface and Its Use as an Antibody-Compatible Platform for Biosensing. <i>ACS Omega</i> , 2021 , 6, 7286-7295	3.9	3
15	Incorporating Aptamers in the Multiple Analyte Profiling Assays (xMAP): Detection of C-Reactive Protein. <i>Methods in Molecular Biology</i> , 2017 , 1575, 303-322	1.4	2
14	Assessment of Aptamer-Targeted Contrast Agents for Monitoring of Blood Clots in Computed Tomography and Fluoroscopy Imaging. <i>Bioconjugate Chemistry</i> , 2020 , 31, 2737-2749	6.3	2
13	Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 217, 112222	7	2
12	Immobilization of Aptamers on Substrates 2018 , 85-126		2
11	Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies. <i>Processes</i> , 2019 , 7, 336	2.9	1

10	Preparation and characterization of aptamer-polyelectrolyte films and microcapsules for biosensing and delivery applications. <i>Methods</i> , 2016 , 97, 75-87	4.6	1
9	Weak Ferromagnetic Ground State in Copper(II) Linear Chains. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 376, 289-294	0.5	1
8	Fibrinogen aptamer functionalized gold-coated iron-oxide nanoparticles for targeted imaging of thrombi <i>Chemical Communications</i> , 2022 ,	5.8	1
7	Progress in graphene-based optical and electrochemical aptasensors 2016 , 393-431		1
6	Selection of DNA Aptamers for Root Exudate l-Serine Using Multiple Selection Strategies. <i>Journal of Agricultural and Food Chemistry</i> , 2021 , 69, 4294-4306	5.7	1
5	Development and characterization of a DNA aptamer for MLL-AF9 expressing acute myeloid leukemia cells using whole cell-SELEX. <i>Scientific Reports</i> , 2021 , 11, 19174	4.9	1
4	Transformation of Silver Nanoparticles (AgNPs) during Lime Treatment of Wastewater Sludge and Their Impact on Soil Bacteria. <i>Nanomaterials</i> , 2021 , 11,	5.4	1
3	Fate and removal of silver nanoparticles during sludge conditioning and their impact on soil health after simulated land application. <i>Water Research</i> , 2021 , 206, 117757	12.5	O
2	Adsorption-desorption nano-aptasensors: fluorescent screening assays for ochratoxin A <i>RSC Advances</i> , 2022 , 12, 13727-13739	3.7	0
1	Optimized experimental pre-treatment strategy for temporary inhibition of islet amyloid polypeptide aggregation. <i>Biochemistry and Biophysics Reports</i> , 2021 , 26, 100964	2.2	