Jun-Hao Chu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8075526/jun-hao-chu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

5,649 60 307 39 h-index g-index citations papers 6,949 5.8 329 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
307	Ferro-electric and magnetic properties in Bi5Ti3FeO15 films by Mn doping. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 1003-1009	7.1	
306	Applications of Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. <i>Advanced Energy and Sustainability Research</i> , 2022 , 3, 2100189	1.6	3
305	Ultralow-Power Machine Vision with Self-Powered Sensor Reservoir <i>Advanced Science</i> , 2022 , e2106092	13.6	8
304	High Quality P-Type Mg-Doped EGa2O3E ilms for Solar-Blind Photodetectors. <i>IEEE Electron Device Letters</i> , 2022 , 43, 580-583	4.4	1
303	High-Efficiency Full-Space Complex-Amplitude Metasurfaces Enabled by a Bi-Spectral Single-Substrate-Layer Meta-Atom. <i>Advanced Optical Materials</i> , 2022 , 10, 2102084	8.1	4
302	Epitaxial growth and phase evolution of ferroelectric La-doped HfO2 films. <i>Applied Physics Letters</i> , 2022 , 120, 162904	3.4	О
301	HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector <i>Science Advances</i> , 2022 , 8, eabn1811	14.3	8
300	Thermal Conductivity of Large-Area Polycrystalline MoSe Films Grown by Chemical Vapor Deposition. <i>ACS Omega</i> , 2021 , 6, 30526-30533	3.9	
299	Anomalous NH-Induced Resistance Enhancement in Halide Perovskite MAPbI Film and Gas Sensing Performance. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11339-11345	6.4	О
298	Structural, Electronic Band Transition and Optoelectronic Properties of p-Type Transparent Conductive CuCr1 NixO2 Semiconductor Films. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 26139-26149	3.8	
297	A bioinspired porous-designed hydrogel@polyurethane sponge piezoresistive sensor for human-machine interfacing. <i>Nanoscale</i> , 2021 , 13, 19155-19164	7.7	4
296	Inorganic lead-free antimony-based perovskite-inspired solar cells with a carbon electrode and green anti-solvent regulation. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 15301-15308	7.1	1
295	Optically Modulated HfS-Based Synapses for Artificial Vision Systems. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 50132-50140	9.5	2
294	Gate-Tunable Photodiodes Based on Mixed-Dimensional Te/MoTe2 Van der Waals Heterojunctions. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001066	6.4	13
293	Interface engineering of ferroelectric-gated MoS2 phototransistor. <i>Science China Information Sciences</i> , 2021 , 64, 1	3.4	4
292	Band gap narrowing and electrical properties of (1-x)BaTiO3-xSrFe0.5Nb0.5O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2021 , 32, 10151-10159	2.1	1
291	Modified room-temperature magnetic and optical properties in bilayer xBi6Fe2Ti3O18 [[1½]CoFe2O4 composite thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 10320-10328	2.1	1

(2021-2021)

2 90	RF magnetron sputtering processed transparent conductive aluminum doped ZnO thin films with excellent optical and electrical properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 9106-9114	2.1	4	
289	Asymmetric Au Electrodes-Induced Self-Powered OrganicIhorganic Perovskite Photodetectors. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 1149-1154	2.9	4	
288	Room temperature preparation of highly stable cesium lead halide perovskite nanocrystals by ligand modification for white light-emitting diodes. <i>Nano Research</i> , 2021 , 14, 2770-2775	10	7	
287	Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth. <i>Advanced Functional Materials</i> , 2021 , 31, 2101476	15.6	13	
286	Construction of a dual-core hollow waveguide for visible and mid-infrared light transmission based on PTFE tubing and UV gel. <i>Optical and Quantum Electronics</i> , 2021 , 53, 1	2.4		
285	Passivated Emitter and Rear Cell Silicon Solar Cells with a Front Polysilicon Passivating Contacted Selective Emitter. <i>Physica Status Solidi - Rapid Research Letters</i> , 2021 , 15, 2100057	2.5	2	
284	Electron Injection Improvement of n-Type Organic Field-Effect Transistors With Indium Contact Interlayer. <i>IEEE Transactions on Electron Devices</i> , 2021 , 68, 2440-2446	2.9	2	
283	Carrier-capture-assisted optoelectronics based on van der Waals materials to imitate medicine-acting metaplasticity. <i>Npj 2D Materials and Applications</i> , 2021 , 5,	8.8	1	
282	Ferroelectric-tuned van der Waals heterojunction with band alignment evolution. <i>Nature Communications</i> , 2021 , 12, 4030	17.4	18	
281	Realization of 11.5% Efficiency Cu2ZnSn(S,Se)4 Thin-Film Solar Cells by Manipulating the Phase Structure of Precursor Films. <i>Solar Rrl</i> , 2021 , 5, 2100216	7.1	6	
280	Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge-Trap Layered Electronics. <i>Advanced Functional Materials</i> , 2021 , 31, 2005182	15.6	3	
279	Electron⊞ole Plasma Lasing Dynamics in CsPbClmBr3-m Microplate Lasers. ACS Photonics, 2021, 8, 787-	7 6 .75	8	
278	Object Identification With Smart Glove Assembled by Pressure Sensors 2021 , 1-1		2	
277	End-Bonded Contacts of Tellurium Transistors. ACS Applied Materials & amp; Interfaces, 2021, 13, 7766-7	77.3	3	
276	Ferroelectric Synaptic Transistor Network for Associative Memory. <i>Advanced Electronic Materials</i> , 2021 , 7, 2001276	6.4	17	
275	Plasmonic semiconductor nanogroove array enhanced broad spectral band millimetre and terahertz wave detection. <i>Light: Science and Applications</i> , 2021 , 10, 58	16.7	10	
274	Vapor Transport Deposition: Vapor Transport Deposition of Highly Efficient Sb2(S,Se)3 Solar Cells via Controllable Orientation Growth (Adv. Funct. Mater. 28/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170204	15.6	1	
273	Electric-field modulated photovoltaic effect of ferroelectric double-perovskite Bi2FeMnO6 films. Applied Physics Letters, 2021 , 119, 102903	3.4	О	

272	CVD-Grown 2D Nonlayered NiSe as a Broadband Photodetector. <i>Micromachines</i> , 2021 , 12,	3.3	1
271	High-Performance Photodetectors with an Ultrahigh Photoswitching Ratio and a Very Fast Response Speed in Self-Powered Cu2ZnSnS4/CdS PN Heterojunctions. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 4135-4143	4	2
270	A high-power seawater battery working in a wide temperature range enabled by an ultra-stable Prussian blue analogue cathode. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 8685-8691	13	3
269	Poly(vinyl alcohol)/phosphoric acid gel electrolyte@polydimethylsiloxane sponge for piezoresistive pressure sensors. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 8676-8685	7.3	4
268	Phase transitions and phonon thermodynamics in giant piezoelectric Mn-doped K0.5Na0.5NbO3liBiO3 crystals studied by Raman spectroscopy. <i>Physical Review B</i> , 2020 , 102,	3.3	3
267	Direct Patterning on Top-Gate Organic Thin-Film Transistors: Improvement of On/Off Ratio, Subthreshold Swing, and Uniformity. <i>IEEE Electron Device Letters</i> , 2020 , 41, 1082-1085	4.4	6
266	P-N conversion of charge carrier types and high photoresponsive performance of composition modulated ternary alloy W(SSe) field-effect transistors. <i>Nanoscale</i> , 2020 , 12, 15304-15317	7.7	3
265	Resistive Effects on the Spatially Resolved Absolute Electroluminescence of Thin-Film Cu(In, Ga)Se2 Solar Cells Studied by a Distributed Two-Diode Model. <i>IEEE Access</i> , 2020 , 8, 112859-112866	3.5	6
264	MoO2 Sacrificial Layer for Optimizing Back Contact Interface of Cu2ZnSn(S,Se)4 Solar Cells. <i>IEEE Journal of Photovoltaics</i> , 2020 , 10, 1191-1200	3.7	11
263	Coupled Electrical Conduction in Coordination Polymers: From Electrons/Ions to Mixed Charge Carriers. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1202-1213	4.5	4
262	Nonvolatile Negative Optoelectronic Memory Based on Ferroelectric Thin Films. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 1035-1040	4	9
261	Mixed-Dimensional Van der Waals Heterostructure Photodetector. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 18674-18682	9.5	10
260	Enhanced carrier separation in ferroelectric In2Se3/MoS2 van der Waals heterostructure. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11160-11167	7.1	14
259	Temperature and pressure manipulation of magnetic ordering and phonon dynamics with phase transition in multiferroic GdFeO3: Evidence from Raman scattering. <i>Physical Review B</i> , 2020 , 102,	3.3	6
258	Spin-phonon coupling and two-magnons scattering behaviors in hexagonal NiAs-type antiferromagnetic MnTe epitaxial films. <i>Journal of Raman Spectroscopy</i> , 2020 , 51, 1383-1389	2.3	1
257	MoTe p-n Homojunctions Defined by Ferroelectric Polarization. <i>Advanced Materials</i> , 2020 , 32, e190793	7 24	60
256	Room-Temperature Anisotropic Plasma Mirror and Polarization-Controlled Optical Switch Based on Type-II Weyl Semimetal WP2. <i>Physical Review Applied</i> , 2020 , 13,	4.3	3
255	Two-dimensional series connected photovoltaic cells defined by ferroelectric domains. <i>Applied Physics Letters</i> , 2020 , 116, 073101	3.4	6

(2020-2020)

254	High Responsivity and External Quantum Efficiency Photodetectors Based on Solution-Processed Ni-Doped CuO Films. <i>ACS Applied Materials & Samp; Interfaces</i> , 2020 , 12, 11797-11805	9.5	24
253	Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. <i>Nature Electronics</i> , 2020 , 3, 43-50	28.4	98
252	Strong charge-density-wave order of large-area 2D metallic VSe2 nanosheets discovered by temperature-dependent Raman spectra. <i>Applied Physics Letters</i> , 2020 , 116, 033102	3.4	6
251	Enhanced photovoltaic response of lead-free ferroelectric solar cells based on (K,Bi)(Nb,Yb)O films. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 3691-3701	3.6	9
250	Extremely Low Dark Current MoS2 Photodetector via 2D Halide Perovskite as the Electron Reservoir. <i>Advanced Optical Materials</i> , 2020 , 8, 1901402	8.1	28
249	Multifunctional MoS Transistors with Electrolyte Gel Gating. <i>Small</i> , 2020 , 16, e2000420	11	13
248	Correlation of oxygen vacancy and Jahn Teller polarons in epitaxial perovskite SrMnO3 ultrathin films: Dielectric spectroscopy investigations. <i>Applied Physics Letters</i> , 2020 , 116, 142901	3.4	2
247	Structural, optical, and enhanced multiferroic properties of xCoFe2O4-(1 ß)K0.5Bi0.5TiO3 ferriteferroelectric composites. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 10639-106	² 48	1
246	Ferroelectric domain structure of Bi2FeCrO6 multiferroic thin films. <i>Journal of Applied Physics</i> , 2020 , 128, 234103	2.5	0
245	Multiwavelength GaN-Based Surface-Emitting Lasers and Their Design Principles. <i>Annalen Der Physik</i> , 2020 , 532, 1900308	2.6	2
244	Ultrasensitive negative capacitance phototransistors. <i>Nature Communications</i> , 2020 , 11, 101	17.4	63
243	Absolute electroluminescence imaging with distributed circuit modeling: Excellent for solar-cell defect diagnosis. <i>Progress in Photovoltaics: Research and Applications</i> , 2020 , 28, 295-306	6.8	5
242	A type-II GaSe/GeS heterobilayer with strain enhanced photovoltaic properties and external electric field effects. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 89-97	7.1	22
241	High performance tube sensor based on PANI/Eu nanofiber for low-volume NH detection. <i>Analytica Chimica Acta</i> , 2020 , 1093, 115-122	6.6	12
240	Ferroelectricity and antiferromagnetism in organicIhorganic hybrid (1,4-bis(imidazol-1-ylmethyl)benzene)CuCl4IH2O. <i>CrystEngComm</i> , 2020 , 22, 587-592	3.3	5
239	Band gap narrowing and magnetic properties of transition-metal-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 lead-free ceramics. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 2491-2498	3.8	6
238	Recent Progress in Two-Dimensional Ferroelectric Materials. Advanced Electronic Materials, 2020, 6, 190	6 848	99
237	Importance of Interfacial Passivation in the High Efficiency of Sb2Se3 Thin-Film Solar Cells: Numerical Evidence. ACS Applied Energy Materials, 2020, 3, 10415-10422	6.1	6

236	Effects of SF decomposition components and concentrations on the discharge faults and insulation defects in GIS equipment. <i>Scientific Reports</i> , 2020 , 10, 15039	4.9	2
235	A Universal Method to Enhance Flexibility and Stability of Organic Solar Cells by Constructing Insulating Matrices in Active Layers. <i>Advanced Functional Materials</i> , 2020 , 30, 2003654	15.6	63
234	Nanometer-Thick Metastable Zinc Blende EMnTe Single-Crystalline Films for High-Performance Ultraviolet and Broadband Photodetectors. <i>ACS Applied Nano Materials</i> , 2020 , 3, 12046-12054	5.6	2
233	New Pressure Stabilization Structure in Two-Dimensional PtSe. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7342-7349	6.4	5
232	Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer. <i>Advanced Functional Materials</i> , 2020 , 30, 2006156	15.6	15
231	Ferroelectric-Modulated MoS Field-Effect Transistors as Multilevel Nonvolatile Memory. <i>ACS Applied Materials & Discrete Applied & </i>	9.5	6
230	A versatile photodetector assisted by photovoltaic and bolometric effects. <i>Light: Science and Applications</i> , 2020 , 9, 160	16.7	24
229	Modification of Back Contact in CuZnSnS Solar Cell by Inserting Al-Doped ZnO Intermediate Layer. <i>ACS Applied Materials & Doped Sump; Interfaces</i> , 2020 , 12, 58060-58071	9.5	20
228	Graphene oxide-FeO nanocomposite magnetic solid phase extraction followed by UHPLC-MS/MS for highly sensitive determination of eight psychoactive drugs in urine samples. <i>Talanta</i> , 2020 , 206, 12	0243	37
227	Structural phase transition, optical bandgap, interband electronic transition, and improved magnetism in bivalent Ca-, Sr-, Pb-, and Ba-doped BiFeO3 ceramics. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 8464-8471	2.1	4
226	Superior and Reversible Lithium Storage of SnO/Graphene Composites by Silicon Doping and Carbon Sealing. <i>ACS Applied Materials & Doping amp; Interfaces</i> , 2020 , 12, 20824-20837	9.5	17
225	InN superconducting phase transition. <i>Scientific Reports</i> , 2019 , 9, 12309	4.9	1
224	Multimode Signal Processor Unit Based on the Ambipolar WSe-Cr Schottky Junction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 38895-38901	9.5	1
223	Tuning the Crystal Structure and Luminescence of Pyrrolidinium Manganese Halides via Halide Ions. <i>Crystal Research and Technology</i> , 2019 , 54, 1800236	1.3	18
222	Current-controlled negative differential resistance in small-polaron hopping system. <i>AIP Advances</i> , 2019 , 9, 055223	1.5	
221	Ultrasensitive Hybrid MoS-ZnCdSe Quantum Dot Photodetectors with High Gain. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 23667-23672	9.5	40
220	Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm. <i>Advanced Science</i> , 2019 , 6, 1901050	13.6	32
219	Efficient and Hole-Transporting-Layer-Free CsPbI2Br Planar Heterojunction Perovskite Solar Cells through Rubidium Passivation. <i>ChemSusChem</i> , 2019 , 12, 960-960	8.3	1

218	Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications. <i>Sensors</i> , 2019 , 19,	3.8	36
217	Random Lasing in ZnO Nanopowders Based on Multiphoton Absorption for Ultrafast Upconversion Application. <i>ACS Applied Nano Materials</i> , 2019 , 2, 1909-1919	5.6	9
216	Reliable Mobility Evaluation of Organic Field-Effect Transistors With Different Contact Metals. <i>IEEE Electron Device Letters</i> , 2019 , 40, 605-608	4.4	9
215	Ultrabroad-Spectrum Photodetectors: Multimechanism Synergistic Photodetectors with Ultrabroad Spectrum Response from 375 nm to 10 µm (Adv. Sci. 15/2019). <i>Advanced Science</i> , 2019 , 6, 1970089	13.6	1
214	Origin of Photocatalytic Activity in Ti4+/Ti3+ CoreBhell Titanium Oxide Nanocrystals. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 20949-20959	3.8	12
213	Ultra-wide temperature electronic synapses based on self-rectifying ferroelectric memristors. <i>Nanotechnology</i> , 2019 , 30, 464001	3.4	10
212	Exploring lattice symmetry evolution with discontinuous phase transition by Raman scattering criteria: The single-crystalline (K,Na)NbO3 model system. <i>Physical Review B</i> , 2019 , 100,	3.3	7
211	Efficient two-terminal artificial synapse based on a network of functionalized conducting polymer nanowires. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9933-9938	7.1	18
210	Understanding Thickness-Dependent Electrical Characteristics in Conjugated Polymer Transistors With Top-Gate Staggered Structure. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 2723-2728	2.9	10
209	5.91%-efficient Sb2Se3 solar cells with a radio-frequency magnetron-sputtered CdS buffer layer. <i>Applied Materials Today</i> , 2019 , 16, 367-374	6.6	27
208	Self-assembly of a lateral quasi-Ohmic CuInSe2/InSe isotype heterojunction for flexible devices by pulsed laser deposition. <i>Applied Physics Letters</i> , 2019 , 115, 162104	3.4	5
207	Probing Effective Out-of-Plane Piezoelectricity in van der Waals Layered Materials Induced by Flexoelectricity. <i>Small</i> , 2019 , 15, e1903106	11	16
206	Large-Scale Growth and Field-Effect Transistors Electrical Engineering of Atomic-Layer SnS. <i>Small</i> , 2019 , 15, e1904116	11	29
205	A study on ionic gated MoS2 phototransistors. <i>Science China Information Sciences</i> , 2019 , 62, 1	3.4	7
204	Exploration of a Ca1½(NaCe)x/2Bi4Ti3.98(WNb)0.01O15 ceramic intermediate phase by temperature-dependent spectroscopic ellipsometry and Raman scattering. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2019 , 37, 061211	1.3	
203	2D Materials: Probing Effective Out-of-Plane Piezoelectricity in van der Waals Layered Materials Induced by Flexoelectricity (Small 46/2019). <i>Small</i> , 2019 , 15, 1970250	11	
202	Composition Dependence of Optical Properties and Band Structures in p-Type Ni-Doped CuO Films: Spectroscopic Experiment and First-Principles Calculation. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 27165-27171	3.8	9
201	Structure dependence of ferroelectricity in high quality BiMnO3 epitaxial films. <i>Physical Review Materials</i> , 2019 , 3,	3.2	4

200	Dual-Mode Sensor and Actuator to Learn Human-Hand Tracking and Grasping. <i>IEEE Transactions on Electron Devices</i> , 2019 , 66, 5407-5410	2.9	13
199	Origin of Band-Tail and Deep-Donor States in CuZnSnS Solar Cells and Their Suppression through Sn-Poor Composition. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7929-7936	6.4	40
198	Decoding Phases of Matter by Machine-Learning Raman Spectroscopy. <i>Physical Review Applied</i> , 2019 , 12,	4.3	11
197	Sodium citrate doped polypyrrole/PS glass capillary tube sensor for ultra-small volume HCl gas detection <i>RSC Advances</i> , 2019 , 9, 36351-36357	3.7	3
196	Efficient and Hole-Transporting-Layer-Free CsPbI Br Planar Heterojunction Perovskite Solar Cells through Rubidium Passivation. <i>ChemSusChem</i> , 2019 , 12, 983-989	8.3	64
195	A Robust Artificial Synapse Based on Organic Ferroelectric Polymer. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800600	6.4	81
194	Ferroelectric Synapses: A Robust Artificial Synapse Based on Organic Ferroelectric Polymer (Adv. Electron. Mater. 1/2019). <i>Advanced Electronic Materials</i> , 2019 , 5, 1970006	6.4	0
193	Optoelectronics: High-Performance Photovoltaic Detector Based on MoTe2/MoS2 Van der Waals Heterostructure (Small 9/2018). <i>Small</i> , 2018 , 14, 1870038	11	5
192	Interface Modification for Planar Perovskite Solar Cell Using Room-Temperature Deposited Nb2O5 as Electron Transportation Layer. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2000-2006	6.1	32
191	High-Performance Photovoltaic Detector Based on MoTe /MoS Van der Waals Heterostructure. Small, 2018 , 14, 1703293	11	132
190	Lattice dynamics, phase transition, and tunable fundamental band gap of photovoltaic (K,Ba)(Ni,Nb)O3lteramics from spectral measurements and first-principles calculations. <i>Physical Review B</i> , 2018 , 97,	3.3	7
189	Spatial and Frequency Selective Plasmonic Metasurface for Long Wavelength Infrared Spectral Region. <i>Advanced Optical Materials</i> , 2018 , 6, 1800337	8.1	14
188	Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8511-8516	11.5	87
187	Investigation of electrically-active defects in Sb2Se3 thin-film solar cells with up to 5.91% efficiency via admittance spectroscopy. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 186, 324-329	6.4	45
186	Thermal oxidation-resistant GeO2 ATR hollow waveguide based on NiCr capillary tube and its thermal effects. <i>Applied Physics B: Lasers and Optics</i> , 2018 , 124, 1	1.9	
185	Controllable interlayer space effects of layered potassium triniobate nanoflakes on enhanced pH dependent adsorption-photocatalysis behaviors. <i>Scientific Reports</i> , 2018 , 8, 6616	4.9	7
184	Manipulating Behaviors from Heavy Tungsten Doping on Interband Electronic Transition and Orbital Structure Variation of Vanadium Dioxide Films. <i>ACS Applied Materials & Discourse Amp; Interfaces</i> , 2018 , 10, 30548-30557	9.5	13
183	Ferroelectric Negative Capacitance Field Effect Transistor. <i>Advanced Electronic Materials</i> , 2018 , 4, 18002	28.4	64

182	Leakage mechanisms of double-perovskite Bi2FeMnO6epitaxial thin films. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 045304	3	4	
181	Field Effect Transistors: Ferroelectric Negative Capacitance Field Effect Transistor (Adv. Electron. Mater. 11/2018). <i>Advanced Electronic Materials</i> , 2018 , 4, 1870051	6.4	2	
180	High-performance lead-free two-dimensional perovskite photo transistors assisted by ferroelectric dielectrics. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12714-12720	7.1	25	
179	An 8.7% efficiency co-electrodeposited Cu2ZnSnS4 photovoltaic device fabricated via a pressurized post-sulfurization process. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13275-13282	7.1	26	
178	Difference analysis model for the mismatch effect and substrate-induced lattice deformation in atomically thin materials. <i>Physical Review B</i> , 2018 , 98,	3.3	5	
177	Sensitive determination of nine anticoagulant rodenticides in blood by high resolution mass spectrometry with supported liquid extraction pretreatment. <i>Forensic Science International</i> , 2018 , 292, 39-44	2.6	11	
176	Metallic hollow waveguide based on GeO2NaOH precursor solution for transmission of CO2 laser radiations. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	1	
175	High Mobilities in Layered InSe Transistors with Indium-Encapsulation-Induced Surface Charge Doping. <i>Advanced Materials</i> , 2018 , 30, e1803690	24	76	
174	Picosecond Random Lasing Based on Three-Photon Absorption in Organometallic Halide CH3NH3PbBr3 Perovskite Thin Films. <i>ACS Photonics</i> , 2018 , 5, 2951-2959	6.3	32	
173	Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition. <i>AIP Advances</i> , 2018 , 8, 045304	1.5	7	
172	Simultaneous determination of nine anticoagulant rodenticides by ultra-performance liquid chromatography-tandem mass spectrometry with ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction. Journal of Chromatography B: Analytical Technologies in the	3.2	7	
171	Biomedical and Life Sciences, 2018 , 1092, 453-458 Superior adsorption and photoinduced carries transfer behaviors of dandelion-shaped BiS@MoS: experiments and theory. <i>Scientific Reports</i> , 2017 , 7, 42484	4.9	45	
170	The preparation, and structural and multiferroic properties of B-site ordered double-perovskite Bi2FeMnO6. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 5494-5500	7.1	19	
169	Tuning Coupling Behavior of Stacked Heterostructures Based on MoS, WS, and WSe. <i>Scientific Reports</i> , 2017 , 7, 44712	4.9	43	
168	Electronic transitions of the transparent delafossite-type CuGa1½CrxO2 system: first-principles calculations and temperature-dependent spectral experiments. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 183-191	7.1	11	
167	Structural, ferromagnetic and optical properties of pure bismuth A-site polar perovskite Bi(Mg3/8Fe2/8Ti3/8)O3 synthesized at ambient pressure. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 934-938	2.1	1	
166	Optical Manipulation of Rashba Spin-Orbit Coupling at SrTiO-Based Oxide Interfaces. <i>Nano Letters</i> , 2017 , 17, 6534-6539	11.5	17	
165	Two-dimensional negative capacitance transistor with polyvinylidene fluoride-based ferroelectric polymer gating. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	57	

164	Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. <i>Scientific Reports</i> , 2017 , 7, 8903	4.9	51
163	Electrical and optical properties of a kind of ferroelectric oxide films comprising of PbZr0.4Ti0.6O3 stacks. <i>Journal of Applied Physics</i> , 2017 , 122, 024102	2.5	1
162	Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy. <i>AIP Advances</i> , 2017 , 7, 095116	1.5	30
161	Evaluation of lattice dynamics, infrared optical properties and visible emissions of hexagonal GeO2 films prepared by liquid phase deposition. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12792-12799	7.1	4
160	Study on light-capture performance of silicon thin-film hollow waveguide solar cells. <i>Optical and Quantum Electronics</i> , 2017 , 49, 1	2.4	O
159	Boosted adsorption hotocatalytic activities and potential lithium intercalation applications of layered potassium hexaniobate nano-family. <i>RSC Advances</i> , 2017 , 7, 28105-28113	3.7	6
158	Effects of deposition methods and processing techniques on band gap, interband electronic transitions, and optical absorption in perovskite CH3NH3PbI3 films. <i>Applied Physics Letters</i> , 2017 , 111, 011906	3.4	9
157	Electrical characterization of MoS2 field-effect transistors with different dielectric polymer gate. <i>AIP Advances</i> , 2017 , 7, 065121	1.5	7
156	The electro-optic mechanism and infrared switching dynamic of the hybrid multilayer VO/Al:ZnO heterojunctions. <i>Scientific Reports</i> , 2017 , 7, 4425	4.9	14
155	Structure evolution mechanism of Na0.5Bi2.5Nb2\(\mathbb{N}\) WxO9+\(\text{Ferroelectric ceramics:}\) Temperature-dependent optical evidence and first-principles calculations. <i>Physical Review B</i> , 2017 , 96,	3.3	8
154	7.1% efficient co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. <i>Green Chemistry</i> , 2016 , 18, 550-557	10	94
153	Improved Performance of Electroplated CZTS Thin-Film Solar Cells with Bifacial Configuration. <i>ChemSusChem</i> , 2016 , 9, 2149-58	8.3	30
152	Spin-glass state induced low field magnetization-step effect in a Hg1\(\mathbb{R}\)MnxTe single crystal. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 2015-2019	1.3	
151	A Direct Method to Extract Transient Sub-Gap Density of State (DOS) Based on Dual Gate Pulse Spectroscopy. <i>Scientific Reports</i> , 2016 , 6, 24096	4.9	9
150	Optoelectronic Properties of Few-Layer MoS FET Gated by Ferroelectric Relaxor Polymer. <i>ACS Applied Materials & Applied & Appl</i>	9.5	60
149	Lattice Dynamics, Dielectric Constants, and Phase Diagram of Bismuth Layered Ferroelectric Bi3Ti1\(\text{W}\ximex\text{NbO9+}\(\text{Ceramics}. \) Journal of the American Ceramic Society, 2016 , 99, 3610-3615	3.8	6
148	Directly tailoring photon-electron coupling for sensitive photoconductance. <i>Scientific Reports</i> , 2016 , 6, 22938	4.9	2
147	Flexible graphene field effect transistor with ferroelectric polymer gate. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	14

146	Spin-manipulated phonon dynamics during magnetic phase transitions in triangular lattice antiferromagnet CuCr1\(\text{M}\) mgxO2 semiconductor films. RSC Advances, 2016 , 6, 27136-27142	3.7	7	
145	A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies. <i>RSC Advances</i> , 2016 , 6, 58046-58054	3.7	7	
144	Relationship between negative thermal expansion and lattice dynamics in a tetragonal PbTiO3 B i(Mg1/2Ti1/2)O3 perovskite single crystal. <i>RSC Advances</i> , 2016 , 6, 3159-3164	3.7	11	
143	Co-electrodeposited Cu2ZnSnS4 thin-film solar cells with over 7% efficiency fabricated via fine-tuning of the Zn content in absorber layers. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3798-3805	13	67	
142	The effect of substrate temperature, Cu/Sn ratio and post-annealing on the phase-change and properties of Cu2SnS3 film deposited by ultrasonic spray pyrolysis. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 4636-4646	2.1	19	
141	Spectral assignments in the infrared absorption region and anomalous thermal hysteresis in the interband electronic transition of vanadium dioxide films. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 6239-46	3.6	11	
140	Coexistence of Ferroelectric Phases and Phonon Dynamics in Relaxor Ferroelectric Na0.5Bi0.5TiO3 Based Single Crystals. <i>Journal of the American Ceramic Society</i> , 2016 , 99, 2408-2414	3.8	16	
139	Optical evidences for an intermediate phase in relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. <i>AIP Advances</i> , 2016 , 6, 025106	1.5	1	
138	Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences. <i>Scientific Reports</i> , 2016 , 6, 33639	4.9	13	
137	Effect of Nb and more Fe ions co-doping on the microstructures, magnetic, and piezoelectric properties of Aurivillius Bi5Ti3FeO15 phases. <i>Journal of Applied Physics</i> , 2016 , 120, 214104	2.5	12	
136	Sintering, Structural and Optical Properties of Aurivillius Bi4LaTi3TMO15 (TM = Co, Cr, Fe, Mn and Ni) Ceramics. <i>Ferroelectrics</i> , 2016 , 492, 109-116	0.6	2	
135	Terahertz Detection: Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection (Adv. Mater. 1/2016). <i>Advanced Materials</i> , 2016 , 28, 111-111	24	3	
134	Copper content dependence of electrical properties and Raman spectra of Se-deficient Cu(In,Ga)Se2 thin films for solar cells. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 91	24 ² 913	o ⁷	
133	Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection. <i>Advanced Materials</i> , 2016 , 28, 112-7	24	11	
132	Ferroelectric polymer tuned two dimensional layered MoTe2 photodetector. RSC Advances, 2016, 6, 8	74 3.6- 8	7434	
131	A novel technique for probing phase transitions in ferroelectric functional materials: Condensed matter spectroscopy. <i>Science China Technological Sciences</i> , 2016 , 59, 1537-1548	3.5	1	
130	Photoinduced magnetization effect in a p-type Hg1\(\text{M}\)MnxTe single crystal investigated by infrared photoluminescence. <i>Physical Review B</i> , 2016 , 94,	3.3	5	
129	Visible to short wavelength infrared In2Se3-nanoflake photodetector gated by a ferroelectric polymer. <i>Nanotechnology</i> , 2016 , 27, 364002	3.4	46	

128	Influence of Eu doping on structural and optical properties of BiFeO3 films deposited on quartz substrates by pulsed laser deposition method. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 2977-2981	2.1	7
127	Ferroelectric control of magnetism in P(VDFIIrFE)/Co heterostructure. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 7502-7506	2.1	9
126	Influence of different S/Se ratio on the properties of Cu2Sn(S x Se1-x)3 thin films fabricated by annealing stacked metal precursors. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 6723	- 67 29	13
125	Optoelectronic properties and polar nano-domain behavior of solgel derived K0.5Na0.5Nb1\(\text{M}\) MnxO3\(Inanocrystalline films with enhanced ferroelectricity. Journal of Materials Chemistry C, 2015 , 3, 8225-8234	7.1	29
124	Synthesis of Cu2ZnGeS4 thin film via sulfurization of RF magnetron sputtered precursor. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 3984-3988	2.1	8
123	Co-electroplated Kesterite Bifacial Thin-Film Solar Cells: A Study of Sulfurization Temperature. <i>ACS Applied Materials & Study Stud</i>	9.5	27
122	Manipulations from oxygen partial pressure on the higher energy electronic transition and dielectric function of VO2 films during a metal[hsulator transition process. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5033-5040	7.1	27
121	Synthesis and characterization of earth-abundant Cu2MnSnS4 thin films using a non-toxic solution-based technique. <i>RSC Advances</i> , 2015 , 5, 84295-84302	3.7	42
120	High performance of Mn-Co-Ni-O spinel nanofilms sputtered from acetate precursors. <i>Scientific Reports</i> , 2015 , 5, 10899	4.9	54
119	Temperature-dependent lattice dynamics and electronic transitions in 0.93Pb(Zn1/3Nb2/3)O3D.07PbTiO3 single crystals: Experiment and theory. <i>Physical Review B</i> , 2015 , 91,	3.3	20
118	Long-term reliability of silicon wafer-based traditional backsheet modules and double glass modules. <i>RSC Advances</i> , 2015 , 5, 65768-65774	3.7	17
117	Optical and magnetic properties of KBiFe2O5 thin films fabricated by chemical solution deposition. <i>Materials Letters</i> , 2015 , 161, 423-426	3.3	17
116	Dielectric behaviors of Aurivillius Bi5Ti3Fe0.5Cr0.5O15 multiferroic polycrystals: Determining the intrinsic magnetoelectric responses by impedance spectroscopy. <i>Scientific Reports</i> , 2015 , 5, 17846	4.9	36
115	Photodetectors: Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). <i>Advanced Materials</i> , 2015 , 27, 6538-6538	24	5
114	Polarization fluctuation behavior of lanthanum substituted Bi4Ti3O12 thin films. <i>Journal of Applied Physics</i> , 2015 , 118, 104102	2.5	17
113	Ultrasensitive and Broadband MoSIPhotodetector Driven by Ferroelectrics. <i>Advanced Materials</i> , 2015 , 27, 6575-81	24	559
112	The Interfacial Reaction at ITO Back Contact in Kesterite CZTSSe Bifacial Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 3043-3052	8.3	42
111	Effect of Tb-doping on structural, magnetic and optical properties of BiFeO3 films prepared by chemical solution deposition. <i>Materials Letters</i> , 2015 , 158, 266-268	3.3	7

110	In situ atom scale visualization of domain wall dynamics in VO2 insulator-metal phase transition. <i>Scientific Reports</i> , 2014 , 4, 6544	4.9	25
109	Temperature and concentration dependent crystallization behavior of Ge2Sb2Te5 phase change films: tungsten doping effects. <i>RSC Advances</i> , 2014 , 4, 57218-57222	3.7	26
108	Optical phonon behaviors and unstable polar mode in transparent conducting Ba1\(\text{LaxSnO3} \) films from temperature dependent far-infrared reflectance spectra. RSC Advances, 2014, 4, 34987	3.7	4
107	Cu2ZnSnS4 thin film solar cell utilizing rapid thermal process of precursors sputtered from a quaternary target: a promising application in industrial processes. <i>RSC Advances</i> , 2014 , 4, 43080-43086	3.7	38
106	Design and synthesis of pyromellitic diimide-based donor acceptor conjugated polymers for photovoltaic application. <i>Polymers for Advanced Technologies</i> , 2014 , 25, 809-815	3.2	1
105	Structure, optical and magnetic properties of Bi1\(\mathbb{B}\)EuxFeO3 films fabricated by pulsed laser deposition. <i>Applied Surface Science</i> , 2014 , 316, 78-81	6.7	8
104	Synthetically controlling the optoelectronic properties of dithieno[2,3-d:2?,3?-d?]benzo[1,2-b:4,5-b?]dithiophene-alt-diketopyrrolopyrrole-conjugated polymers for efficient solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 15316-15325	13	43
103	Effect of Co doping on the structure, optical and magnetic properties of LaAlO3 thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 3137-3140	2.1	5
102	Synthesis and characterization of Cu2ZnSnS4 thin films by the sulfurization of co-electrodeposited CuZnBnB precursor layers for solar cell applications. <i>RSC Advances</i> , 2014 , 4, 23977-23984	3.7	61
101	The effect of working gas pressure and deposition power on the properties of molybdenum films deposited by DC magnetron sputtering. <i>Science China Technological Sciences</i> , 2014 , 57, 947-952	3.5	7
100	Indolo[3,2,1-jk]carbazole Derivatives-Sensitized Solar Cells: Effect of EBridges on the Performance of Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 14211-14217	3.8	31
99	Influence of rare-earth elements doping on structure and optical properties of BiFeO3 thin films fabricated by pulsed laser deposition. <i>Applied Surface Science</i> , 2014 , 307, 543-547	6.7	11
98	In situ fabrication of Cu2ZnSnS4 nanoflake thin films on both rigid and flexible substrates. <i>CrystEngComm</i> , 2014 , 16, 6244-6249	3.3	29
97	Composition control in Cu2ZnSnS4 thin films by a solgel technique without sulfurization. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 2703-2709	2.1	7
96	Pyromellitic Diimide-Benzodithiophene Copolymer for Polymer Solar Cells: Effect of Side Chain Length and Thiophene Bridge on Optical and Electronic Properties. <i>Molecular Crystals and Liquid Crystals</i> , 2014 , 604, 151-163	0.5	1
95	Investigation of cation distribution, electrical, magnetic properties and their correlation in Mn2-xCo2xNi1-xO4 films. <i>Journal of Applied Physics</i> , 2014 , 115, 113703	2.5	33
94	ZnSe-Based Longitudinal Twinning Nanowires. Advanced Engineering Materials, 2014, 16, 459-465	3.5	10
93	Magnetocaloric effect in multiferroic Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe0.92Al0.08)12O22. <i>AIP Advances</i> , 2014 , 4, 067122	1.5	13

92	Atomic-Scale Visualization of Polarization Pinning and Relaxation at Coherent BiFeO3/LaAlO3 Interfaces. <i>Advanced Functional Materials</i> , 2014 , 24, 793-799	15.6	31
91	Enhanced FrBlich interaction of semiconductor cuprous oxide films determined by temperature-dependent Raman scattering and spectral transmittance. <i>Journal of Raman Spectroscopy</i> , 2013 , 44, 142-146	2.3	11
90	Formation and characterization of nanoporous structures on surface of LPD-derived GeO2 ceramic film. <i>Journal of Porous Materials</i> , 2013 , 20, 359-365	2.4	4
89	Development of a Multiband Passive Scanning Imager. <i>Journal of Infrared, Millimeter, and Terahertz Waves</i> , 2013 , 34, 267-276	2.2	1
88	Improved electric behaviors of the Pt/Bi1\(\text{BLaxFe0.92Mn0.08O3/n+-Si heterostructure for nonvolatile ferroelectric random-access memory. } <i>Journal of Materials Chemistry C</i> , 2013 , 1, 6252	7.1	9
87	Controlling Rashba spin splitting in Au(111) surface states through electric field. <i>Physical Review B</i> , 2013 , 87,	3.3	36
86	A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects. <i>Science China: Physics, Mechanics and Astronomy</i> , 2013 , 56, 232-244	3.6	11
85	The Cr-substitution concentration dependence of the structural, electric and magnetic behaviors for Aurivillius Bi5Ti3FeO15 multiferroic ceramics. <i>Journal of Applied Physics</i> , 2013 , 114, 234101	2.5	32
84	Nitrogen-doped Ge3Te2 materials with self-restricted active region for low power phase-change memory. <i>Journal of Applied Physics</i> , 2013 , 113, 034310	2.5	13
83	A simple method used to evaluate phase-change materials based on focused-ion beam technique. <i>Applied Physics Letters</i> , 2013 , 102, 203510	3.4	
82	Processing optimization and sintering time dependent magnetic and optical behaviors of Aurivillius Bi5Ti3FeO15 ceramics. <i>Journal of Applied Physics</i> , 2013 , 113, 034901	2.5	36
81	Manganese doping effects on interband electronic transitions, lattice vibrations, and dielectric functions of perovskite-type Ba0.4Sr0.6TiO3 ferroelectric ceramics. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 877-884	2.6	4
80	Low-Temperature Processing of High-Performance 0.74Pb(Mg1/3Nb2/3)O3 D .26PbTiO3 Thin Films on La0.6Sr0.4CoO3-Buffered Si Substrates for Pyroelectric Arrays Applications. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1367-1371	3.8	9
79	Temperature dependent phonon Raman scattering of Heusler alloy Co2MnxFe1⊠Al/GaAs films grown by molecular-beam epitaxy. <i>RSC Advances</i> , 2012 , 2, 9899	3.7	8
78	Structural, electronic band transition and optoelectronic properties of delafossite CuGa1\(\mathbb{R}\)CrxO2 (0\(\mathcal{L}\)A\(\mathcal{B}\)) solid solution films grown by the sol\(\mathcal{B}\)el method. Journal of Materials Chemistry, 2012 , 22, 18463		60
77	Manipulation of magnetic anisotropy of Fe/graphene by charge injection. <i>Applied Physics Letters</i> , 2012 , 100, 122410	3.4	34
76	Fabrication of Cu2ZnSnS4 absorbers by sulfurization of Sn-rich precursors. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 1493-1497	1.6	14
75	Doping effect on the phase transition temperature in ferroelectric SrBi2\(\mathbb{U}\)NdxNb2O9 layer-structured ceramics: a micro-Raman scattering study. <i>Journal of Raman Spectroscopy</i> , 2012 , 43, 583-587	2.3	9

(2010-2012)

74	Effect of Cr doping on the structure, optical and magnetic properties of multiferroic BiFeO3 thin films. <i>Journal of Materials Science: Materials in Electronics</i> , 2012 , 23, 1215-1218	2.1	23
73	W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention. <i>Applied Physics Letters</i> , 2012 , 101, 122108	3.4	50
72	Photoionization absorption and zero-field spin splitting of acceptor-bound magnetic polaron in p-type Hg1-xMnxTe single crystals. <i>Journal of Applied Physics</i> , 2012 , 111, 083502	2.5	5
71	Competition of compressive strain with substrate misorientation in CuPt-type ordered GaInP/AlGaInP quantum wells. <i>Journal of Applied Physics</i> , 2011 , 109, 013509	2.5	8
70	A Special Configuration of Lead Zirconate Titanate Multilayer Stack with Superior Electrical and Optical Properties. <i>Journal of the American Ceramic Society</i> , 2011 , 94, 2761-2763	3.8	3
69	Structure and dielectric properties of 80%Pb(Zn1/3Nb2/3)O3I0%PbTiO3 thin films prepared by modified solgel process. <i>Journal of Sol-Gel Science and Technology</i> , 2011 , 60, 164-169	2.3	1
68	Fabrication and properties of solution processed all polymer thin-film ferroelectric device. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 1510-1513	2.9	22
67	Growth, structural and vibrating properties of CdSetLe, CdSetLetLdSe, CdSetLe/Ge, GetLeSe heterostructure nanowires and GeSe nanobelts. <i>CrystEngComm</i> , 2011 , 13, 2734	3.3	7
66	Miniature supercapacitors composed of nickel/cobalt hydroxide on nickel-coated silicon microchannel plates. <i>Journal of Materials Chemistry</i> , 2011 , 21, 19093		35
65	Al1.3Sb3Te material for phase change memory application. <i>Applied Physics Letters</i> , 2011 , 99, 043105	3.4	44
64	Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K. <i>Journal of Applied Physics</i> , 2011 , 110, 043503	2.5	27
63	Attenuated total reflection GeO2 hollow waveguide for 9.6111.7 th infrared light transmission. <i>Applied Physics Letters</i> , 2011 , 99, 161107	3.4	7
62	Weak antilocalization effect in high-mobility two-dimensional electron gas in an inversion layer on p-type HgCdTe. <i>Applied Physics Letters</i> , 2011 , 99, 042103	3.4	9
61	Modulation mechanism of infrared photoreflectance in narrow-gap HgCdTe epilayers: A pump power dependent study. <i>Journal of Applied Physics</i> , 2010 , 108, 023518	2.5	9
60	Variation in hopping conduction across the magnetic transition in spinel Mn1.56Co0.96Ni0.48O4 films. <i>Applied Physics Letters</i> , 2010 , 96, 082103	3.4	25
59	Magnetic Field Induced Dielectric and Ferroelectric Behaviors in Pb(Zr0.5Ti0.5)O3/CoFe2O4 0-3 Thick Composite Films. <i>Ferroelectrics</i> , 2010 , 410, 50-58	0.6	2
58	Structural, electrical, and magnetic properties of Mn2.52⊠CoxNi0.48O4 films. <i>Journal of Applied Physics</i> , 2010 , 107, 053716	2.5	17
57	Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs. <i>Applied Physics Letters</i> , 2010 , 96, 121915	3.4	34

56	Domain stabilization effect of interlayer on ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin film. <i>Journal of Applied Physics</i> , 2009 , 105, 034107	2.5	42	
55	Effect of oxygen to argon ratio on properties of (Ba,Sr)TiO3 thin films prepared on LaNiO3/Si substrates. <i>Journal of Applied Physics</i> , 2009 , 105, 061637	2.5	7	
54	Fabrication and characteristics of porous germanium films. <i>Science and Technology of Advanced Materials</i> , 2009 , 10, 065001	7.1	21	
53	Aqueous germanate solution, alternative solgel precursor for preparation of Mn x Ge1 diluted magnetic semiconductors. <i>Journal of Sol-Gel Science and Technology</i> , 2009 , 51, 139-145	2.3	1	
52	Influence of the illumination on the subband structure and occupation in Al x Ga1☑ N/GaN heterostructures. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 96, 953-957	2.6	1	
51	Effect of Polyethylene Glycol Content on the Optical Properties of Ba0.9Sr0.1TiO3 Multilayers. Journal of the American Ceramic Society, 2009 , 92, 539-541	3.8	3	
50	Realization of photoreflectance spectroscopy in very-long wave infrared of up to 20 fh. <i>Applied Physics Letters</i> , 2009 , 95, 041908	3.4	18	
49	Characterization of Mn1.56Co0.96Ni0.48O4 films for infrared detection. <i>Applied Physics Letters</i> , 2008 , 92, 202115	3.4	62	
48	Deep/shallow levels in arsenic-doped HgCdTe determined by modulated photoluminescence spectra. <i>Applied Physics Letters</i> , 2008 , 93, 131909	3.4	24	
47	Progress and prospect for high temperature single-phased magnetic ferroelectrics. <i>Science Bulletin</i> , 2008 , 53, 2097-2112	10.6	29	
46	Study on the Ferroelectric Thin Films for Uncooled Infrared Detection. Ferroelectrics, 2007, 352, 12-24	0.6	4	
45	Lattice thermal conductivity in a Sites heterostructure. <i>Journal of Applied Physics</i> , 2007 , 101, 114323	2.5	13	
44	Optical magnetic response from parallel plate metamaterials. <i>Physical Review B</i> , 2006 , 74,	3.3	23	
43	Magnetophotoluminescence study of GaxIn1⊠P quantum wells with CuPt-type long-range ordering. <i>Journal of Applied Physics</i> , 2006 , 100, 053522	2.5	15	
42	Study of the ferroelectricity in Bi2Ti2O7 by infrared spectroscopic ellipsometry. <i>Applied Physics Letters</i> , 2005 , 86, 112905	3.4	12	
41	Effects of Individual Layer Thickness on the Structure and Electrical Properties of Sol G el-Derived Ba0.8Sr0.2TiO3 Thin Films. <i>Journal of the American Ceramic Society</i> , 2004 , 83, 2616-2618	3.8	14	
40	Fabrication and Characterization of Pyroelectric Ba0.8Sr0.2TiO3 Thin Films by a Sol-Gel Process. Journal of the American Ceramic Society, 2004 , 84, 1421-1424	3.8	12	
39	Ferroelectricity of weak-polar organic molecules in alternate Langmuir-Blodgett multilayer films. <i>Science Bulletin</i> , 2003 , 48, 2176-2179		1	

(2000-2003)

38	Optical properties of Bi3.25La0.75Ti3O12 thin films using spectroscopic ellipsometry. <i>Journal of Applied Physics</i> , 2003 , 93, 3811-3815	2.5	26
37	Forbidden transitions and the effective masses of electrons and holes in In1\(\mathbb{N} \)GaxAs/InP quantum wells with compressive strain. <i>Journal of Applied Physics</i> , 2003 , 93, 951-956	2.5	2
36	Compressively strained p-type InGaAs/AlGaAs quantum-well infrared photodetectors. <i>Journal of Applied Physics</i> , 2002 , 92, 6287-6290	2.5	3
35	Field-induced transition in the S=1 antiferromagnetic chain with single-ion anisotropy in a transverse magnetic field. <i>Physical Review B</i> , 2002 , 66,	3.3	11
34	Influence of Edoping position on subband properties in In0.2Ga0.8As/GaAs heterostructures. <i>Physical Review B</i> , 2002 , 65,	3.3	9
33	Memory properties of metal-ferroelectric-semiconductor structure. <i>Ferroelectrics</i> , 2001 , 253, 239-245	0.6	
32	Spectral characteristic of infrared radiations of some acupoint and non-acupoint areas in human arm surface. <i>Science Bulletin</i> , 2001 , 46, 678-682		12
31	Roughness Effect on Thermal Conductivity of Thin Films. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 225, 35-41	1.3	4
30	Size Effect on Thermal Conductivity of Square Wires. <i>Physica Status Solidi (B): Basic Research</i> , 2001 , 226, 285-292	1.3	2
29	Study of Properties of Urea and L-PAlanine Didoped Triglycine Sulfate (UrLATGS) Crystals. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2001 , 22, 329-334		2
28	A Ferroelectric Frequency-Doubling Material-Potassium Lithium Niobate. <i>Journal of Infrared, Millimeter and Terahertz Waves</i> , 2001 , 22, 197-205		
27	Sol-gel derived pyroelectric barium strontium titanate thin films for infrared detector applications. <i>Ferroelectrics</i> , 2001 , 252, 313-320	0.6	4
26	Low-temperature fabrication of pyroelectric Ba0.8Sr0.2TiO3 thin films by a sol-gel process. <i>Journal of Materials Research</i> , 2001 , 16, 778-783	2.5	3
25	Second harmonic generation of ferroelectric potassium lithium niobate crystals. <i>Integrated Ferroelectrics</i> , 2001 , 35, 97-103	0.8	O
24	Sol-Gel Derived Pyroelectric Barium Strontium Titanate Thin films for Infrared Detector Applications. <i>Materials Research Society Symposia Proceedings</i> , 2000 , 655, 66		
23	Magneto-optical Kerr effect in Co x Ag1-x nanostructured granular films. <i>Science in China Series A: Mathematics</i> , 2000 , 43, 753-759		
22	Pyroelectric properties in solgel derived barium strontium titanate thin films using a highly diluted precursor solution. <i>Applied Physics Letters</i> , 2000 , 77, 1035	3.4	63
21	Infrared optical properties of Ba0.8Sr0.2TiO3 ferroelectric thin films. <i>Applied Physics Letters</i> , 2000 , 77, 3651-3653	3.4	27

20	Light-emission properties in nanocrystalline BaTiO3. Applied Physics Letters, 2000, 77, 2807-2809	3.4	43
19	Optical properties of PbZrxTi1NO3 on platinized silicon by infrared spectroscopic ellipsometry. <i>Applied Physics Letters</i> , 2000 , 76, 3980-3982	3.4	48
18	Infrared optical properties of SrBi2Ta2O9 ferroelectric thin films. <i>Journal of Applied Physics</i> , 1999 , 86, 1771-1773	2.5	17
17	Optical properties of nanocrystalline silicon embedded in SiO2. <i>Science in China Series A: Mathematics</i> , 1999 , 42, 995-1002		
16	The Magneto-Optical Kerr Effect Enhancement in CoxAg1⊠ Granular Films. <i>Physica Status Solidi</i> (B): Basic Research, 1999 , 214, 463-469	1.3	4
15	Absorption spectra of nanocrystalline silicon embedded in SiO2 matrix. <i>Applied Physics Letters</i> , 1999 , 75, 1857-1859	3.4	41
14	Pyroelectric Ba0.8Sr0.2TiO3 thin films derived from a 0.05 M solution precursor by solgel processing. <i>Applied Physics Letters</i> , 1999 , 75, 3402-3404	3.4	29
13	Highfield effects of layered perovskite ferroelectric thin films. <i>Science in China Series D: Earth Sciences</i> , 1998 , 41, 502-510		1
12	Determination of cut-off wavelength and composition distribution in Hg1-xCdxTe. <i>Journal of Electronic Materials</i> , 1998 , 27, 718-721	1.9	4
11	Study of impurity states in p-type Hg1\(\text{\texts}\)CdxTe using far-infrared spectroscopy. <i>Applied Physics Letters</i> , 1998 , 73, 1538-1540	3.4	17
10	Evaluation of densities and mobilities for heavy and light holes in p-type Hg1\(\text{MCdxTe molecular} \) beam epitaxy films from magnetic-field-dependent Hall data. <i>Journal of Applied Physics</i> , 1998 , 84, 4327-	-4331	13
9	Spectra analysis of annealed Hg1\(\mathbb{R}\)CdxTe molecular beam epitaxial films. <i>Applied Physics Letters</i> , 1998 , 73, 1376-1378	3.4	5
8	Optical Properties of Sol-Gel Derived PbTiO3 and PbZr1\(\text{\text{ITiO3}}\) Ferroelectric Thin Films. <i>Materials Research Society Symposia Proceedings</i> , 1998 , 541, 723		4
7	Recent progress on HgCdTe at the national laboratory for infrared physics in china. <i>Journal of Electronic Materials</i> , 1996 , 25, 1176-1182	1.9	6
6	Morphology improvement of the Hg1⊠CdxTe liquid-phase epilayers by meltback step. <i>Physica Status Solidi A</i> , 1996 , 157, 83-91		1
5	Empirical rule of intrinsic absorption spectroscopy in Hg1\(\mathbb{R}\)CdxTe. <i>Journal of Applied Physics</i> , 1994 , 75, 1234-1235	2.5	65
4	Energy gap versus alloy composition and temperature in Hg1⊠CdxTe. <i>Applied Physics Letters</i> , 1983 , 43, 1064-1066	3.4	95
3	Pursuing High-Performance Organic Field-Effect Transistors through Organic Salt Doping. <i>Advanced Functional Materials</i> ,2111285	15.6	4

LIST OF PUBLICATIONS

Co-electrodeposition of Cu3BiS3 thin films in weakly alkaline aqueous solutions for photovoltaic application. *Journal of Materials Science: Materials in Electronics*,1

2.1 O

Tunable Multi-Bit Nonvolatile Memory Based on Ferroelectric Field-Effect Transistors. *Advanced Electronic Materials*,2101189

6.4