
Dania Haddad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/807551/publications.pdf Version: 2024-02-01

Πλιιλ Ηλοολο

#	Article	IF	CITATIONS
1	ACE2 and FURIN variants are potential predictors of SARS-CoV-2 outcome: A time to implement precision medicine against COVID-19. Heliyon, 2021, 7, e06133.	3.2	26
2	SARS-CoV-2: Possible recombination and emergence of potentially more virulent strains. PLoS ONE, 2021, 16, e0251368.	2.5	57
3	Microarray analysis reveals ONC201 mediated differential mechanisms of CHOP gene regulation in metastatic and nonmetastatic colorectal cancer cells. Scientific Reports, 2021, 11, 11893.	3.3	7
4	Dental Pulp Stem Cells Derived From Adult Human Third Molar Tooth: A Brief Review. Frontiers in Cell and Developmental Biology, 2021, 9, 717624.	3.7	27
5	Increased Plasma Levels of Adenylate Cyclase 8 and cAMP Are Associated with Obesity and Type 2 Diabetes: Results from a Cross-Sectional Study. Biology, 2020, 9, 244.	2.8	13
6	Comparative Proteomic Analysis Identifies EphA2 as a Specific Cell Surface Marker for Wharton's Jelly-Derived Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 6437.	4.1	10
7	Role of Caveolin-1 in Diabetes and Its Complications. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	4.0	66
8	Incidence of Type 2 Diabetes in Kuwaiti Children and Adolescents: Results From the Childhood-Onset Diabetes Electronic Registry (CODeR). Frontiers in Endocrinology, 2019, 10, 836.	3.5	10
9	Duplication of a germline promoter downstream of the IgH 3′ regulatory region impairs class switch recombination. Scientific Reports, 2018, 8, 9164.	3.3	6
10	Generation and Validation of Intracellular Ubiquitin Variant Inhibitors for USP7 and USP10. Journal of Molecular Biology, 2017, 429, 3546-3560.	4.2	44
11	Inducible CTCF insulator delays the <i>IgH</i> 3′ regulatory region-mediated activation of germline promoters and alters class switching. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6092-6097.	7.1	20
12	Kin17 facilitates multiple double-strand break repair pathways that govern B cell class switching. Scientific Reports, 2016, 6, 37215.	3.3	11
13	The SAGA Deubiquitination Module Promotes DNA Repair and Class Switch Recombination through ATM and DNAPK-Mediated γH2AX Formation. Cell Reports, 2016, 15, 1554-1565.	6.4	81
14	Genomic Uracil Homeostasis during Normal B Cell Maturation and Loss of This Balance during B Cell Cancer Development. Molecular and Cellular Biology, 2014, 34, 4019-4032.	2.3	23
15	AID-Expressing Germinal Center B Cells Cluster Normally within Lymph Node Follicles in the Absence of FDC-M1+ CD35+ Follicular Dendritic Cells but Dissipate Prematurely. Journal of Immunology, 2013, 191, 4521-4530.	0.8	27
16	AID and Caspase 8 Shape the Germinal Center Response through Apoptosis. Journal of Immunology, 2013, 191, 5840-5847.	0.8	17
17	Sense transcription through the S region is essential for immunoglobulin class switch recombination. EMBO Journal, 2011, 30, 1608-1620.	7.8	15
18	Seeking sense of antisense switch transcripts. Transcription, 2011, 2, 183-188.	3.1	1

#	Article	IF	CITATIONS
19	Combined deficiency of MSH2 and Sμ region abolishes class switch recombination. European Journal of Immunology, 2010, 40, 2925-2931.	2.9	2
20	Replacement of Iμ-Cμ intron by NeoR gene alters Iμ germ-line expression but has no effect on V(D)J recombination. Molecular Immunology, 2010, 47, 961-971.	2.2	3