Junyoung Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8075484/publications.pdf

Version: 2024-02-01

1478505 1720034 7 137 6 7 citations h-index g-index papers 7 7 7 141 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Measuring and modelling supercritical adsorption of CO2 and CH4 on montmorillonite source clay. Microporous and Mesoporous Materials, 2019, 273, 107-121.	4.4	43
2	Supercritical CO ₂ and CH ₄ Uptake by Illite-Smectite Clay Minerals. Environmental Science & Environmental	10.0	37
3	Supercritical adsorption in micro- and meso-porous carbons and its utilisation for textural characterisation. Microporous and Mesoporous Materials, 2020, 308, 110537.	4.4	18
4	H ₂ , N ₂ , CO ₂ , and CH ₄ Unary Adsorption Isotherm Measurements at Low and High Pressures on Zeolitic Imidazolate Framework ZIF-8. Journal of Chemical & Data, 2022, 67, 1674-1686.	1.9	15
5	Measurement and interpretation of unary supercritical gas adsorption isotherms in micro-mesoporous solids. Adsorption, 2021, 27, 659-671.	3.0	12
6	Chemoâ€Mechanical Coupling in Fractured Shale With Water and Hydrocarbon Flow. Geophysical Research Letters, 2021, 48, e2020GL091357.	4.0	6
7	Enhanced Sorption of Supercritical CO2 and CH4 in the Hydrated Interlayer Pores of Smectite. Langmuir, 2021, 37, 3778-3788.	3.5	6