Todd E Golde List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8075410/publications.pdf Version: 2024-02-01 264 papers 29,535 citations 4658 85 h-index 161 g-index 281 all docs 281 does citations times ranked 281 29425 citing authors | # | Article | IF | CITATIONS | |----|--|------|-----------| | 1 | Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles. Neuron, 2003, 39, 409-421. | 8.1 | 3,609 | | 2 | A subset of NSAIDs lower amyloidogenic $\hat{Al^2}$ 42 independently of cyclooxygenase activity. Nature, 2001, 414, 212-216. | 27.8 | 1,352 | | 3 | \hat{l}^3 -Secretase Cleavage and Nuclear Localization of ErbB-4 Receptor Tyrosine Kinase. Science, 2001, 294, 2179-2181. | 12.6 | 825 | | 4 | Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384. | 21.4 | 783 | | 5 | The secretases: enzymes with therapeutic potential in Alzheimer disease. Nature Reviews Neurology, 2010, 6, 99-107. | 10.1 | 702 | | 6 | Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780. | 30.7 | 547 | | 7 | AÎ ² 42 Is Essential for Parenchymal and Vascular Amyloid Deposition in Mice. Neuron, 2005, 47, 191-199. | 8.1 | 524 | | 8 | Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7607-7612. | 7.1 | 523 | | 9 | NSAIDs and enantiomers of flurbiprofen target \hat{I}^3 -secretase and lower A \hat{I}^2 42 in vivo. Journal of Clinical Investigation, 2003, 112, 440-449. | 8.2 | 476 | | 10 | Expression of \hat{l}^2 amyloid protein precursor mRNAs: Recognition of a novel alternatively spliced form and quantitation in alzheimer's disease using PCR. Neuron, 1990, 4, 253-267. | 8.1 | 441 | | 11 | Targeting Notch to Target Cancer Stem Cells. Clinical Cancer Research, 2010, 16, 3141-3152. | 7.0 | 410 | | 12 | Cholesterol-Dependent \hat{I}^3 -Secretase Activity in Buoyant Cholesterol-Rich Membrane Microdomains. Neurobiology of Disease, 2002, 9, 11-23. | 4.4 | 406 | | 13 | Animal models of neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1370-1379. | 14.8 | 358 | | 14 | Anti-Al̂ ² Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011, 69, 203-213. | 8.1 | 350 | | 15 | AÎ ² 40 Inhibits Amyloid Deposition < i>In Vivo < /i>. Journal of Neuroscience, 2007, 27, 627-633. | 3.6 | 327 | | 16 | IL-10 Alters Immunoproteostasis in APP Mice, Increasing Plaque Burden and Worsening Cognitive Behavior. Neuron, 2015, 85, 519-533. | 8.1 | 292 | | 17 | Massive gliosis induced by interleukinâ \in 6 suppresses Aβ deposition <i>in vivo:</i> evidence against inflammation as a driving force for amyloid deposition. FASEB Journal, 2010, 24, 548-559. | 0.5 | 278 | | 18 | Substrate-targeting Î ³ -secretase modulators. Nature, 2008, 453, 925-929. | 27.8 | 277 | | # | Article | IF | Citations | |----|---|------|-----------| | 19 | Intramuscular injection of $\hat{l}\pm$ -synuclein induces CNS $\hat{l}\pm$ -synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10732-10737. | 7.1 | 277 | | 20 | Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production. Nature Medicine, 2005, 11, 545-550. | 30.7 | 276 | | 21 | Biochemical detection of Aβ isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 172-187. | 3.8 | 272 | | 22 | Notch1 augments NF-κB activity by facilitating its nuclear retention. EMBO Journal, 2006, 25, 129-138. | 7.8 | 271 | | 23 | A physiologic signaling role for the \hat{I}^3 -secretase-derived intracellular fragment of APP. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4697-4702. | 7.1 | 261 | | 24 | Evidence That Nonsteroidal Anti-inflammatory Drugs Decrease Amyloid \hat{l}^2 42 Production by Direct Modulation of \hat{l}^3 -Secretase Activity. Journal of Biological Chemistry, 2003, 278, 31831-31837. | 3.4 | 259 | | 25 | Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nature Neuroscience, 2009, 12, 1300-1307. | 14.8 | 259 | | 26 | Inhibitors of \hat{I}^3 -secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunology, 2005, 6, 680-688. | 14.5 | 252 | | 27 | Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. Journal of Clinical Investigation, 2013, 123, 4158-4169. | 8.2 | 246 | | 28 | Transthyretin protects Alzheimer's mice from the behavioral and biochemical effects of $\hat{Al^2}$ toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2681-2686. | 7.1 | 245 | | 29 | \hat{l}^3 -Secretase inhibitors and modulators. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2898-2907. | 2.6 | 238 | | 30 | Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34, 163-177. | 4.4 | 236 | | 31 | TCR-Mediated Notch Signaling Regulates Proliferation and IFN- \hat{l}^3 Production in Peripheral T Cells. Journal of Immunology, 2003, 171, 3019-3024. | 0.8 | 227 | | 32 | Notch Signaling in Cancer. Current Molecular Medicine, 2006, 6, 905-918. | 1.3 | 219 | | 33 | Off the beaten pathway: the complex cross talk between Notch and NF- \hat{l}° B. Laboratory Investigation, 2008, 88, 11-17. | 3.7 | 208 | | 34 | Notch signaling is activated by TLR stimulation and regulates macrophage functions. European Journal of Immunology, 2008, 38, 174-183. | 2.9 | 207 | | 35 | Amyloid- \hat{l}^2 Immunization Effectively Reduces Amyloid Deposition in FcR \hat{l}^3 sup>-/-Knock-Out Mice. Journal of Neuroscience, 2003, 23, 8532-8538. | 3.6 | 205 | | 36 | Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Reports, 2020, 32, 107908. | 6.4 | 199 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene, 2005, 24, 6333-6344. | 5.9 | 195 | | 38 | MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Laboratory Investigation, 2019, 99, 912-928. | 3.7 | 190 | | 39 | Efficient Neuronal Gene Transfer with AAV8 Leads to Neurotoxic Levels of Tau or Green Fluorescent Proteins. Molecular Therapy, 2006, 13, 517-527. | 8.2 | 180 | | 40 | Notch signaling mediates $G1/S$ cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood, 2009, 113, 1689-1698. | 1.4 | 173 | | 41 | Anti-AÂ42- and anti-AÂ40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model.
Journal of Clinical Investigation, 2005, 116, 193-201. | 8.2 | 172 | | 42 | IFN- \hat{l}^3 Promotes Complement Expression and Attenuates Amyloid Plaque Deposition in Amyloid \hat{l}^2 Precursor Protein Transgenic Mice. Journal of Immunology, 2010, 184, 5333-5343. | 0.8 | 169 | | 43 | Identification of a novel family of presenilin homologues. Human Molecular Genetics, 2002, 11, 1037-1044. | 2.9 | 157 | | 44 | Statins Reduce Amyloid- \hat{l}^2 Production through Inhibition of Protein Isoprenylation. Journal of Biological Chemistry, 2007, 282, 26832-26844. | 3.4 | 156 | | 45 | Targeting Notch in oncology: the path forward. Nature Reviews Drug Discovery, 2021, 20, 125-144. | 46.4 | 152 | | 46 | Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction. Journal of Visualized Experiments, 2014, , 51863. | 0.3 | 151 | | 47 | Notch Regulates Cytolytic Effector Function in CD8+ T Cells. Journal of Immunology, 2009, 182, 3380-3389. | 0.8 | 150 | | 48 | Capsid Serotype and Timing of Injection Determines AAV Transduction in the Neonatal Mice Brain. PLoS ONE, 2013, 8, e67680. | 2.5 | 149 | | 49 | Reduced effectiveness of ${\sf A\hat{l}^21\text{-}42}$ immunization in APP transgenic mice with significant amyloid deposition. Neurobiology of Aging, 2001, 22, 721-727. | 3.1 | 148 | | 50 | Genetic Suppression of Transgenic APP Rescues Hypersynchronous Network Activity in a Mouse Model of Alzeimer's Disease. Journal of Neuroscience, 2014, 34, 3826-3840. | 3.6 | 144 | | 51 | Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102. | 9.0 | 144 | | 52 | Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunology, 2005, 6, 680-8. | 14.5 | 139 | | 53 | A Novel \hat{I}^3 -Secretase Assay Based on Detection of the Putative C-terminal Fragment- \hat{I}^3 of Amyloid \hat{I}^2 Protein Precursor. Journal of Biological Chemistry, 2001, 276, 481-487. | 3.4 | 135 | | 54 | Increased free water
in the substantia nigra of Parkinson's disease: a single-site and multi-site study. Neurobiology of Aging, 2015, 36, 1097-1104. | 3.1 | 133 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | βâ€Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Molecular Medicine, 2012, 4, 980-991. | 6.9 | 125 | | 56 | Alzheimer disease therapy: Can the amyloid cascade be halted?. Journal of Clinical Investigation, 2003, 111, 11-18. | 8.2 | 125 | | 57 | Viral transduction of the neonatal brain delivers controllable genetic mosaicism for visualising and manipulating neuronal circuits <i>in vivo</i> . European Journal of Neuroscience, 2013, 37, 1203-1220. | 2.6 | 123 | | 58 | $\hat{I}^3\hat{a}$ €Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Molecular Medicine, 2017, 9, 950-966. | 6.9 | 123 | | 59 | AÎ ² 42-lowering Nonsteroidal Anti-inflammatory Drugs Preserve Intramembrane Cleavage of the Amyloid Precursor Protein (APP) and ErbB-4 Receptor and Signaling through the APP Intracellular Domain. Journal of Biological Chemistry, 2003, 278, 30748-30754. | 3.4 | 119 | | 60 | Intracranial Adeno-Associated Virus-Mediated Delivery of Anti-Pan Amyloid beta, Amyloid beta40, and Amyloid beta42 Single-Chain Variable Fragments Attenuates Plaque Pathology in Amyloid Precursor Protein Mice. Journal of Neuroscience, 2006, 26, 11923-11928. | 3.6 | 119 | | 61 | Filling the Gaps in the Aβ Cascade Hypothesis of Alzheimers Disease. Current Alzheimer Research, 2006, 3, 421-430. | 1.4 | 116 | | 62 | Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimer's and Dementia, 2018, 14, 352-366. | 0.8 | 116 | | 63 | Secretory processing of the Alzheimer amyloid \hat{I}^2 A4 protein precursor is increased by protein phosphorylation. Biochemical and Biophysical Research Communications, 1992, 187, 1285-1290. | 2.1 | 115 | | 64 | Disease modifying therapy for AD?. Journal of Neurochemistry, 2006, 99, 689-707. | 3.9 | 115 | | 65 | Brain Injection of α-Synuclein Induces Multiple Proteinopathies, Gliosis, and a Neuronal Injury Marker. Journal of Neuroscience, 2014, 34, 12368-12378. | 3.6 | 115 | | 66 | Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Research, 2010, 30, 3853-67. | 1.1 | 115 | | 67 | Alzheimer's disease: The right drug, the right time. Science, 2018, 362, 1250-1251. | 12.6 | 114 | | 68 | Insights into the mechanisms of action of antiâ€Aβ antibodies in Alzheimer's disease mouse models. FASEB Journal, 2006, 20, 2576-2578. | 0.5 | 110 | | 69 | BRI2 (ITM2b) Inhibits AÂ Deposition In Vivo. Journal of Neuroscience, 2008, 28, 6030-6036. | 3.6 | 110 | | 70 | Cellâ€free assays for γâ€secretase activity. FASEB Journal, 2000, 14, 2383-2386. | 0.5 | 108 | | 71 | Hippocampal expression of murine TNF $\hat{l}\pm$ results in attenuation of amyloid deposition in vivo. Molecular Neurodegeneration, 2011, 6, 16. | 10.8 | 106 | | 72 | Frontotemporal dementia and parkinsonism associated with the IVS1+1G-> A mutation in progranulin: a clinicopathologic study. Brain, 2006, 129, 3103-3114. | 7.6 | 105 | | # | Article | IF | Citations | |----|--|--------------|-----------| | 73 | Phosphorylation Dynamics Regulate Hsp27-Mediated Rescue of Neuronal Plasticity Deficits in Tau Transgenic Mice. Journal of Neuroscience, 2010, 30, 15374-15382. | 3 . 6 | 105 | | 74 | Matrix metalloproteinase-9 contributes to brain extravasation and edema in fulminant hepatic failure mice. Journal of Hepatology, 2006, 44, 1105-1114. | 3.7 | 104 | | 75 | Alzheimer's \hat{l}^2 -Secretase (BACE1) Regulates the cAMP/PKA/CREB Pathway Independently of \hat{l}^2 -Amyloid. Journal of Neuroscience, 2012, 32, 11390-11395. | 3.6 | 104 | | 76 | Divergent effects of the H50Q and G51D <i>SNCA</i> mutations on the aggregation of αâ€synuclein. Journal of Neurochemistry, 2014, 131, 859-867. | 3.9 | 104 | | 77 | Inflammatory pre-conditioning restricts the seeded induction of $\hat{l}\pm$ -synuclein pathology in wild type mice. Molecular Neurodegeneration, 2017, 12, 1. | 10.8 | 104 | | 78 | Inclusion body myositis-like phenotype induced by transgenic overexpression of \hat{I}^2 APP in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6334-6339. | 7.1 | 103 | | 79 | Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta
Neuropathologica, 2014, 127, 645-665. | 7.7 | 103 | | 80 | Distinct differences in prion-like seeding and aggregation between Tau protein variants provide mechanistic insights into tauopathies. Journal of Biological Chemistry, 2018, 293, 2408-2421. | 3.4 | 103 | | 81 | Alzheimer's disease phospholipase C-gamma-2 (PLCG2) protective variant is a functional hypermorph.
Alzheimer's Research and Therapy, 2019, 11, 16. | 6.2 | 100 | | 82 | Hippocampal expression of murine IL-4 results in exacerbation of amyloid deposition. Molecular Neurodegeneration, 2012, 7, 36. | 10.8 | 98 | | 83 | Thinking laterally about neurodegenerative proteinopathies. Journal of Clinical Investigation, 2013, 123, 1847-1855. | 8.2 | 98 | | 84 | Robust Amyloid Clearance in a Mouse Model of Alzheimer's Disease Provides Novel Insights into the Mechanism of Amyloid- \hat{l}^2 Immunotherapy. Journal of Neuroscience, 2011, 31, 4124-4136. | 3.6 | 97 | | 85 | Adeno-associated virus-mediated brain delivery of 5-lipoxygenase modulates the AD-like phenotype of APP mice. Molecular Neurodegeneration, 2012, 7, 1. | 10.8 | 96 | | 86 | Do infections have a role in the pathogenesis of Alzheimer disease?. Nature Reviews Neurology, 2020, 16, 193-197. | 10.1 | 96 | | 87 | Presenilin 1 Regulates Pharmacologically Distinct \hat{I}^3 -Secretase Activities. Journal of Biological Chemistry, 2000, 275, 26277-26284. | 3.4 | 93 | | 88 | A Presenilin 1 Mutation Associated with Familial Frontotemporal Dementia Inhibits \hat{I}^3 -Secretase Cleavage of APP and Notch. Neurobiology of Disease, 2002, 9, 269-273. | 4.4 | 92 | | 89 | Overlapping profiles of Abeta peptides in the Alzheimer's disease and pathological aging brains.
Alzheimer's Research and Therapy, 2012, 4, 18. | 6.2 | 92 | | 90 | Adeno-Associated Virus-Mediated Rescue of the Cognitive Defects in a Mouse Model for Angelman Syndrome. PLoS ONE, 2011, 6, e27221. | 2.5 | 92 | | # | Article | IF | Citations | |-----|--|------|-----------| | 91 | The $A\hat{l}^2$ Hypothesis: Leading Us to Rationally-Designed Therapeutic Strategies for the Treatment or Prevention of Alzheimer Disease. Brain Pathology, 2005, 15, 84-87. | 4.1 | 91 | | 92 | Microglia-specific targeting by novel capsid-modified AAV6 vectors. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16026. | 4.1 | 91 | | 93 | Targeting the ERAD pathway via inhibition of signal peptide peptidase for antiparasitic therapeutic design. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21486-21491. | 7.1 | 89 | | 94 | C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. Journal of Neurochemistry, 2006, 96, 218-227. | 3.9 | 87 | | 95 | Highâ€affinity interactions and signal transduction between Aβ oligomers and <scp>TREM</scp> 2. EMBO Molecular Medicine, 2018, 10, . | 6.9 | 86 | | 96 | Epidermal Growth Factor Receptor and Notch Pathways Participate in the Tumor Suppressor Function of \hat{l}^3 -Secretase. Journal of Biological Chemistry, 2007, 282, 32264-32273. | 3.4 | 82 | | 97 | Targeting $\hat{Al^2}$ and tau in Alzheimer's disease, an early interim report. Experimental Neurology, 2010, 223, 252-266. | 4.1 | 80 | | 98 | Metformin inhibits RAN translation through PKR pathway and mitigates disease in <i>C9orf72</i> ALS/FTD mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18591-18599. | 7.1 | 79 | | 99 | Induction of CNS α-synuclein pathology by fibrillar and non-amyloidogenic recombinant α-synuclein. Acta Neuropathologica Communications, 2013, 1, 38. | 5.2 | 78 | | 100 | Signal Peptide Peptidase Forms a Homodimer That Is Labeled by an Active Site-directed Î ³ -Secretase Inhibitor. Journal of Biological Chemistry, 2004, 279, 15153-15160. | 3.4 | 77 | | 101 | Proteinopathy-induced neuronal senescence: a hypothesis for brain failure in Alzheimer's and other neurodegenerative diseases. Alzheimer's Research and Therapy, 2009, 1, 5. | 6.2 | 77 | | 102 | Open questions for Alzheimer's disease immunotherapy. Alzheimer's Research and Therapy, 2014, 6, 3. | 6.2 | 77 | | 103 | Non-Canonical Notch Signaling Drives Activation and Differentiation of Peripheral CD4+ T Cells. Frontiers in Immunology, 2014, 5, 54. | 4.8 | 75 | | 104 | Notch signals in the endothelium and cancer "stem-like" cells: opportunities for cancer therapy. Vascular Cell, 2012, 4, 7. | 0.2 | 74 | | 105 | Normal cognition in transgenic BRI2-A \hat{I}^2 mice. Molecular Neurodegeneration, 2013, 8, 15. | 10.8 | 74 | | 106 | The Non-cyclooxygenase Targets of Non-steroidal Anti-inflammatory Drugs, Lipoxygenases, Peroxisome
Proliferator-activated Receptor, Inhibitor of κB Kinase, and NFκB, Do Not Reduce Amyloid κ42 Production. Journal of Biological Chemistry, 2003, 278, 31825-31830. | 3.4 | 71 | | 107 | Independent Generation of A \hat{I}^2 42 and A \hat{I}^2 38 Peptide Species by \hat{I}^3 -Secretase. Journal of Biological Chemistry, 2008, 283, 17049-17054. | 3.4 | 70 | | 108 | Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Neurodegeneration, 2019, 14, 45. | 10.8 | 69 | | # | Article | IF | Citations | |-----|---|------|-----------| | 109 | Soluble α-synuclein–antibody complexes activate the NLRP3 inflammasome in hiPSC-derived microglia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 7.1 | 69 | | 110 | Identification of Ligand-Induced Proteolytic Cleavage and Ectodomain Shedding of VEGFR-1/FLT1 in Leukemic Cancer Cells. Cancer Research, 2009, 69, 2607-2614. | 0.9 | 67 | | 111 | Interferon- \hat{l}^3 induces progressive nigrostriatal degeneration and basal ganglia calcification. Nature Neuroscience, 2011, 14, 694-696. | 14.8 | 67 | | 112 | Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. Journal of Experimental Medicine, 2013, 210, 1311-1329. | 8.5 | 67 | | 113 | Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer's disease resilience. Genome Medicine, 2017, 9, 100. | 8.2 | 67 | | 114 | A multigram chemical synthesis of the \hat{I}^3 -secretase inhibitor LY411575 and its diastereoisomers. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6392-6395. | 2.2 | 64 | | 115 | Notch Signaling Regulates Mitochondrial Metabolism and NF-κB Activity in Triple-Negative Breast Cancer Cells via IKKI±-Dependent Non-canonical Pathways. Frontiers in Oncology, 2018, 8, 575. | 2.8 | 64 | | 116 | Cholesterol modulation as an emerging strategy for the treatment of Alzheimer's disease. Drug Discovery Today, 2001, 6, 1049-1055. | 6.4 | 63 | | 117 | Novel rat Alzheimer's disease models based on AAV-mediated gene transfer to selectively increase hippocampal ${\rm A}\hat{\rm I}^2$ levels. Molecular Neurodegeneration, 2007, 2, 11. | 10.8 | 61 | | 118 | Convection-enhanced delivery and systemic mannitol increase gene product distribution of AAV vectors 5, 8, and 9 and increase gene product in the adult mouse brain. Journal of Neuroscience Methods, 2010, 194, 144-153. | 2.5 | 61 | | 119 | Lysine 624 of the Amyloid Precursor Protein (APP) Is a Critical Determinant of Amyloid \hat{l}^2 Peptide Length. Journal of Biological Chemistry, 2011, 286, 39804-39812. | 3.4 | 61 | | 120 | Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Molecular Neurodegeneration, 2012, 7, 53. | 10.8 | 61 | | 121 | Conformational templating of \hat{l}_{\pm} -synuclein aggregates in neuronal-glial cultures. Molecular Neurodegeneration, 2013, 8, 17. | 10.8 | 61 | | 122 | Holdase activity of secreted Hsp70 masks amyloid-Î ² 42 neurotoxicity in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5212-21. | 7.1 | 60 | | 123 | β-Secretase cleavage of the amyloid precursor protein mediates neuronal apoptosis caused by familial Alzheimer's disease mutations. Molecular Brain Research, 2001, 97, 103-113. | 2.3 | 59 | | 124 | Signal peptide peptidases: A family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins. Seminars in Cell and Developmental Biology, 2009, 20, 225-230. | 5.0 | 59 | | 125 | Proteolysis of αâ€synuclein fibrils in the lysosomal pathway limits induction of inclusion pathology. Journal of Neurochemistry, 2017, 140, 662-678. | 3.9 | 59 | | 126 | Dysfunction of TGF-β signaling in Alzheimer's disease. Journal of Clinical Investigation, 2006, 116, 2855-2857. | 8.2 | 57 | | # | Article | IF | Citations | |-----|---|------|-----------| | 127 | Alzheimer disease therapy: Can the amyloid cascade be halted?. Journal of Clinical Investigation, 2003, 111, 11-18. | 8.2 | 57 | | 128 | Short $\hat{Al^2}$ peptides attenuate $\hat{Al^2}$ 42 toxicity in vivo. Journal of Experimental Medicine, 2018, 215, 283-301. | 8.5 | 56 | | 129 | Anesthetic Propofol Attenuates the Isoflurane-Induced Caspase-3 Activation and ${\rm A}\hat{\rm I}^2$ Oligomerization. PLoS ONE, 2011, 6, e27019. | 2.5 | 56 | | 130 | The therapeutic importance of understanding mechanisms of neuronal cell death in neurodegenerative disease. Molecular Neurodegeneration, 2009, 4, 8. | 10.8 | 52 | | 131 | Biomarkers for Alzheimer's disease in plasma, serum and blood - conceptual and practical problems.
Alzheimer's Research and Therapy, 2013, 5, 10. | 6.2 | 51 | | 132 | Intrastriatal injection of $\hat{l}\pm$ -synuclein can lead to widespread synucleinopathy independent of neuroanatomic connectivity. Molecular Neurodegeneration, 2017, 12, 40. | 10.8 | 51 | | 133 | Widespread and Efficient Transduction of Spinal Cord and Brain Following Neonatal AAV Injection and Potential Disease Modifying Effect in ALS Mice. Molecular Therapy, 2015, 23, 53-62. | 8.2 | 50 | | 134 | TLR5 decoy receptor as a novel anti-amyloid therapeutic for Alzheimer's disease. Journal of Experimental Medicine, 2018, 215, 2247-2264. | 8.5 | 50 | | 135 | A Signal Peptide Peptidase (SPP) Reporter Activity Assay Based on the Cleavage of Type II Membrane
Protein Substrates Provides Further Evidence for an Inverted Orientation of the SPP Active Site
Relative to Presenilin. Journal of Biological Chemistry, 2004, 279, 43148-43156. | 3.4 | 49 | | 136 | Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci. Acta Neuropathologica, 2016, 132, 197-211. | 7.7 | 49 | | 137 | A candidate regulatory variant at the <i>TREM</i> gene cluster associates with decreased Alzheimer's disease risk and increased <i>TREML1</i> and <i>TREM2</i> brain gene expression. Alzheimer's and Dementia, 2017, 13, 663-673. | 0.8 | 48 | | 138 | rAAV-based brain slice culture models of Alzheimer's and Parkinson's disease inclusion pathologies.
Journal of Experimental Medicine, 2019, 216, 539-555. | 8.5 | 48 | | 139 | NOTCH1 Can Initiate NF-κB Activation via Cytosolic Interactions with Components of the T Cell Signalosome. Frontiers in Immunology, 2014, 5, 249. | 4.8 | 47 | | 140 | Viral expression of ALS-linked ubiquilin-2 mutants causes inclusion pathology and behavioral deficits in mice. Molecular Neurodegeneration, 2015, 10, 25. | 10.8 | 47 | | 141 | Re-Opening the Critical Window for Estrogen Therapy. Journal of Neuroscience, 2015, 35, 16077-16093. | 3.6 | 47 | | 142 | The stress response neuropeptide <scp>CRF</scp> increases amyloidâ€Î² production by regulating γâ€secretase activity. EMBO Journal, 2015, 34, 1674-1686. | 7.8 | 47 | | 143 | Targeting psychologic stress signaling pathways in Alzheimer's disease. Molecular
Neurodegeneration, 2017, 12, 49. | 10.8 | 47 | | 144 | Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathologica, 2018, 136, 709-727. | 7.7 | 47 | | # | Article | IF | Citations | |-----|--|------|-----------| | 145 | Inflammation takes on Alzheimer disease. Nature Medicine, 2002, 8, 936-938. | 30.7 | 46 | | 146 | Reversible Pathologic and
Cognitive Phenotypes in an Inducible Model of Alzheimer-Amyloidosis. Journal of Neuroscience, 2013, 33, 3765-3779. | 3.6 | 46 | | 147 | Integrative approach to sporadic Alzheimer's disease: deficiency of TYROBP in a tauopathy mouse model reduces C1q and normalizes clinical phenotype while increasing spread and state of phosphorylation of tau. Molecular Psychiatry, 2019, 24, 1383-1397. | 7.9 | 46 | | 148 | A novel panel of α-synuclein antibodies reveal distinctive staining profiles in synucleinopathies. PLoS ONE, 2017, 12, e0184731. | 2.5 | 45 | | 149 | Possible Mechanisms of Action of NSAIDs and Related Compounds that Modulate & https://www.secretase.com/pounds that Modulate & https://www.secretase.com/pounds/files/fi | 2.1 | 43 | | 150 | Generating Differentially Targeted Amyloid- \hat{l}^2 Specific Intrabodies as a Passive Vaccination Strategy for Alzheimer's Disease. Molecular Therapy, 2009, 17, 2031-2040. | 8.2 | 43 | | 151 | Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB Journal, 2006, 20, 1671-1679. | 0.5 | 42 | | 152 | A \hat{I}^3 -secretase inhibitor and quinacrine reduce prions and prevent dendritic degeneration in murine brains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10595-10600. | 7.1 | 42 | | 153 | Cyanobacterial Peptides as a Prototype for the Design of Potent \hat{l}^2 -Secretase Inhibitors and the Development of Selective Chemical Probes for Other Aspartic Proteases. Journal of Medicinal Chemistry, 2012, 55, 10749-10765. | 6.4 | 42 | | 154 | Alzheimerâ \in TM s disease â \in " the journey of a healthy brain into organ failure. Molecular Neurodegeneration, 2022, 17, 18. | 10.8 | 41 | | 155 | Precision therapeutic targets for COVID-19. Virology Journal, 2021, 18, 66. | 3.4 | 40 | | 156 | Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau. Acta Neuropathologica Communications, 2017, 5, 58. | 5.2 | 39 | | 157 | Unbiased screen reveals ubiquilin-1 and -2 highly associated with huntingtin inclusions. Brain Research, 2013, 1524, 62-73. | 2.2 | 38 | | 158 | Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses. Frontiers in Immunology, 2018, 9, 1288. | 4.8 | 38 | | 159 | Inhibitors of Rhoâ€kinase modulate amyloidâ€Î² (Aβ) secretion but lack selectivity for Aβ42. Journal of Neurochemistry, 2006, 96, 355-365. | 3.9 | 37 | | 160 | Reduced Alzheimer's Disease β-Amyloid Deposition in Transgenic Mice Expressing <i>S</i> -Palmitoylation-Deficient APH1aL and Nicastrin. Journal of Neuroscience, 2010, 30, 16160-16169. | 3.6 | 37 | | 161 | Notch inhibition in Kaposi's sarcoma tumor cells leads to mitotic catastrophe through nuclear factor-Î ^o B signaling. Molecular Cancer Therapeutics, 2007, 6, 1983-1992. | 4.1 | 36 | | 162 | Disease-Modifying Therapies for Alzheimer's Disease: More Questions than Answers. Neurotherapeutics, 2022, 19, 209-227. | 4.4 | 36 | | # | Article | IF | Citations | |-----|--|--------------|-----------| | 163 | Presenilin 1 Regulates \hat{l}^2 -Catenin-mediated Transcription in a Glycogen Synthase Kinase-3-independent Fashion. Journal of Biological Chemistry, 2001, 276, 38563-38569. | 3.4 | 35 | | 164 | Overexpression of nicastrin increases Aß production. FASEB Journal, 2003, 17, 1138-1140. | 0.5 | 35 | | 165 | Free-water imaging of the hippocampus is a sensitive marker of Alzheimer's disease. Neurolmage: Clinical, 2019, 24, 101985. | 2.7 | 35 | | 166 | Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neurolmage, 2019, 202, 116138. | 4.2 | 34 | | 167 | Production of Amyloid Î ² Protein from Normal Amyloid Î ² -Protein Precursor (Î ² APP) and the Mutated Î ² APPS Linked to Familial Alzheimer's Diseasea. Annals of the New York Academy of Sciences, 1993, 695, 103-108. | 3.8 | 33 | | 168 | Presenilin regulates capacitative calcium entry dependently and independently of \hat{I}^3 -secretase activity. Biochemical and Biophysical Research Communications, 2004, 322, 1145-1152. | 2.1 | 33 | | 169 | Alzheimer's disease risk alleles in TREM2 illuminate innate immunity in Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 24. | 6.2 | 33 | | 170 | Steroids as γâ€secretase modulators. FASEB Journal, 2013, 27, 3775-3785. | 0.5 | 33 | | 171 | Immune responses against Aβ1–42 in HLA class II transgenic mice: implications for Aβ1–42 immune-mediated therapies. Neurobiology of Aging, 2003, 24, 969-976. | 3.1 | 32 | | 172 | Motor neuron loss and neuroinflammation in a model of \hat{l}_{\pm} -synuclein-induced neurodegeneration. Neurobiology of Disease, 2018, 120, 98-106. | 4.4 | 32 | | 173 | Physiologic and Pathologic Events Mediated by Intramembranous and Juxtamembranous Proteolysis.
Science Signaling, 2003, 2003, re4-re4. | 3.6 | 31 | | 174 | Substrate Sequence Influences \hat{I}^3 -Secretase Modulator Activity, Role of the Transmembrane Domain of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2011, 286, 39794-39803. | 3 . 4 | 31 | | 175 | Increased brain hemopexin levels improve outcomes after intracerebral hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1032-1046. | 4.3 | 31 | | 176 | Diffusion magnetic resonance imaging-derived free water detects neurodegenerative pattern induced by interferon-1 ³ . Brain Structure and Function, 2020, 225, 427-439. | 2.3 | 31 | | 177 | Independent Relationship between Amyloid Precursor Protein (APP) Dimerization and \hat{I}^3 -Secretase Processivity. PLoS ONE, 2014, 9, e111553. | 2.5 | 30 | | 178 | Retention in Endoplasmic Reticulum 1 (RER1) Modulates Amyloid- \hat{l}^2 (A \hat{l}^2) Production by Altering Trafficking of \hat{l}^3 -Secretase and Amyloid Precursor Protein (APP). Journal of Biological Chemistry, 2012, 287, 40629-40640. | 3.4 | 29 | | 179 | Transient pharmacologic lowering of ${\sf A}\hat{\sf I}^2$ production prior to deposition results in sustained reduction of amyloid plaque pathology. Molecular Neurodegeneration, 2012, 7, 39. | 10.8 | 29 | | 180 | Age-related increase in amyloid plaque burden is associated with impairment in conditioned fear memory in CRND8 mouse model of amyloidosis. Alzheimer's Research and Therapy, 2012, 4, 21. | 6.2 | 29 | | # | Article | IF | Citations | |-----|--|------|-----------| | 181 | Studies of lipopolysaccharide effects on the induction of \hat{l}_{\pm} -synuclein pathology by exogenous fibrils in transgenic mice. Molecular Neurodegeneration, 2015, 10, 32. | 10.8 | 29 | | 182 | Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders. Neuron, 2019, 101, 1003-1015. | 8.1 | 29 | | 183 | Amyloid \hat{I}^2 peptides overexpression in retinal pigment epithelial cells via AAV-mediated gene transfer mimics AMD-like pathology in mice. Scientific Reports, 2017, 7, 3222. | 3.3 | 28 | | 184 | ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. IScience, 2019, 11, 294-304. | 4.1 | 28 | | 185 | Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types. Cell Reports, 2020, 32, 108029. | 6.4 | 28 | | 186 | Normal Processing of the Alzheimer's Disease Amyloid? Protein Precursor Generates Potentially Amyloidogenic Carboxyl-Terminal Derivatives. Annals of the New York Academy of Sciences, 1992, 674, 138-148. | 3.8 | 27 | | 187 | A Small Molecule Inhibitor of Signal Peptide Peptidase Inhibits Plasmodium Development in the Liver and
Decreases Malaria Severity. PLoS ONE, 2009, 4, e5078. | 2.5 | 27 | | 188 | p53 Modulates Notch Signaling in MCFâ€₹ Breast Cancer Cells by Associating With the Notch Transcriptional Complex Via MAML1. Journal of Cellular Physiology, 2015, 230, 3115-3127. | 4.1 | 27 | | 189 | Recovery from Proactive Semantic Interference and MRI Volume: AÂReplication and Extension Study.
Journal of Alzheimer's Disease, 2017, 59, 131-139. | 2.6 | 27 | | 190 | The Influence of 5-Lipoxygenase on Alzheimer's Disease-Related Tau Pathology: In Vivo and In Vitro Evidence. Biological Psychiatry, 2013, 74, 321-328. | 1.3 | 26 | | 191 | Anti-tau scFvs Targeted to the Cytoplasm or Secretory Pathway Variably Modify Pathology and Neurodegenerative Phenotypes. Molecular Therapy, 2021, 29, 859-872. | 8.2 | 26 | | 192 | Phosphorylation of serine 305 in tau inhibits aggregation. Neuroscience Letters, 2019, 692, 187-192. | 2.1 | 25 | | 193 | Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 984-1004. | 0.8 | 25 | | 194 | Homing in on Intracellular AÎ ² ?. Neuron, 2005, 45, 639-642. | 8.1 | 24 | | 195 | Detection of presenilin-1 homodimer formation in intact cells using fluorescent lifetime imaging microscopy. Biochemical and Biophysical Research Communications, 2006, 340, 668-674. | 2.1 | 24 | | 196 | Robust cytoplasmic accumulation of phosphorylated TDP-43 in transgenic models of tauopathy. Acta Neuropathologica, 2013, 126, 39-50. | 7.7 | 24 | | 197 | Combining P301L and S320F tau variants produces a novel accelerated model of tauopathy. Human Molecular Genetics, 2019, 28, 3255-3269. | 2.9 | 24 | | 198 | A Human Monoclonal IgG That Binds $\hat{Al^2}$ Assemblies and Diverse Amyloids Exhibits Anti-Amyloid Activities<1>In Vitroi>and<1>In Vivo. Journal of Neuroscience, 2015, 35, 6265-6276. | 3.6 | 23 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 199 | IFNâ€Î³ promotes Ï,, phosphorylation without affecting mature tangles. FASEB Journal, 2015, 29, 4384-4398. | 0.5 | 23 | | 200 | \hat{l}^3 -Secretase Processing and Effects of \hat{l}^3 -Secretase Inhibitors and Modulators on Long A \hat{l}^2 Peptides in Cells. Journal of Biological Chemistry, 2014, 289, 3276-3287. | 3.4 | 22 | | 201 | A KCNC3 mutation causes a neurodevelopmental, non-progressive SCA13 subtype associated with dominant negative effects and aberrant EGFR trafficking. PLoS ONE, 2017, 12, e0173565. | 2.5 | 22 | | 202 | Analysis of Proteolytic Processes and Enzymatic Activities in the Generation of Huntingtin N-Terminal Fragments in an HEK293 Cell Model. PLoS ONE, 2012, 7, e50750. | 2.5 | 22 | | 203 | Characterization by radiosequencing of the carboxyl-terminal derivatives produced from normal and mutant amyloid \hat{l}^2 protein precursors. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1994, 1, 30-38. | 3.0 | 21 | | 204 | Anti-A \hat{l}^2 single-chain variable fragment antibodies exert synergistic neuroprotective activities in < i > Drosophila < / i > models of Alzheimer's disease. Human Molecular Genetics, 2015, 24, 6093-6105. | 2.9 | 20 | | 205 | Host immune defence, amyloid- \hat{l}^2 peptide and Alzheimer disease. Nature Reviews Neurology, 2016, 12, 433-434. | 10.1 | 20 | | 206 | APP-Mediated Signaling Prevents Memory Decline in Alzheimer's Disease Mouse Model. Cell Reports, 2019, 27, 1345-1355.e6. | 6.4 | 20 | | 207 | The Presenilin 1 C92S Mutation Increases AÎ 2 42 Production. Biochemical and Biophysical Research Communications, 2000, 277, 261-263. | 2.1 | 19 | | 208 | Non-prion-type transmission in A53T \hat{l} ±-synuclein transgenic mice: a normal component of spinal homogenates from na \hat{A} $^{-}$ ve non-transgenic mice induces robust \hat{l} ±-synuclein pathology. Acta Neuropathologica, 2016, 131, 151-154. | 7.7 | 19 | | 209 | Overcoming translational barriers impeding development of Alzheimer's disease modifying therapies. Journal of Neurochemistry, 2016, 139, 224-236. | 3.9 | 17 | | 210 | Fyn depletion ameliorates tauP301L-induced neuropathology. Acta Neuropathologica Communications, 2020, 8, 108. | 5.2 | 17 | | 211 | Microglia show differential transcriptomic response to $\hat{A^2}$ peptide aggregates ex vivo and in vivo. Life Science Alliance, 2021, 4, e202101108. | 2.8 | 17 | | 212 | Anti-Tau Antibodies: Hitting the Target. Neuron, 2013, 80, 254-256. | 8.1 | 16 | | 213 | Notch1 primes CD4 T cells for T helper type I differentiation through its early effects on miR-29.
Molecular Immunology, 2018, 99, 191-198. | 2.2 | 16 | | 214 | A cognitive stress test for prodromal Alzheimer's disease: Multiethnic generalizability. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 550-559. | 2.4 | 16 | | 215 | Diversity in $\hat{Al^2}$ deposit morphology and secondary proteome insolubility across models of Alzheimer-typeÂamyloidosis. Acta Neuropathologica Communications, 2020, 8, 43. | 5.2 | 16 | | 216 | Utility of Plasma Neurofilament Light in the 1Florida Alzheimer's Disease Research Center (ADRC).
Journal of Alzheimer's Disease, 2021, 79, 59-70. | 2.6 | 16 | | # | Article | IF | Citations | |-----|---|------|-----------| | 217 | Individual and combined presenilin 1 and 2 knockouts reveal that both have highly overlapping functions in HEK293T cells. Journal of Biological Chemistry, 2019, 294, 11276-11285. | 3.4 | 15 | | 218 | Differential Inhibition of Signal Peptide Peptidase Family Members by Established \hat{I}^3 -Secretase Inhibitors. PLoS ONE, 2015, 10, e0128619. | 2.5 | 15 | | 219 | The effect of brief neonatal cryoanesthesia on physical development and adult cognitive function in mice. Behavioural Brain Research, 2014, 259, 253-260. | 2.2 | 13 | | 220 | Photodynamic studies reveal rapid formation and appreciable turnover of tau inclusions. Acta Neuropathologica, 2021, 141, 359-381. | 7.7 | 13 | | 221 | Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions. Journal of Clinical Investigation, 2022, 132, . | 8.2 | 13 | | 222 | AAVâ€mediated delivery of an antiâ€BACE1 VHH alleviates pathology in an Alzheimer's disease model. EMBO Molecular Medicine, 2022, 14, e09824. | 6.9 | 13 | | 223 | Zoom in on neurodegeneration. Molecular Neurodegeneration, 2006, $1,1.$ | 10.8 | 12 | | 224 | Novel monoclonal antibodies targeting the microtubule-binding domain of human tau. PLoS ONE, 2018, 13, e0195211. | 2.5 | 12 | | 225 | Intra- and extracellular \hat{l}^2 -amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936. | 3.3 | 12 | | 226 | Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117. | 3.3 | 12 | | 227 | \hat{I}^3 -Secretase Modulators and APH1 Isoforms Modulate \hat{I}^3 -Secretase Cleavage but Not Position of $\hat{I}\mu$ -Cleavage of the Amyloid Precursor Protein (APP). PLoS ONE, 2015, 10, e0144758. | 2.5 | 11 | | 228 | CD28 Signaling Drives Notch Ligand Expression on CD4 T Cells. Frontiers in Immunology, 2020, 11, 735. | 4.8 | 11 | | 229 | Differences in memory development among C57BL/6NCrl, 129S2/SvPasCrl, and FVB/NCrl mice after delay and trace fear conditioning. Comparative Medicine, 2014, 64, 4-12. | 1.0 | 11 | | 230 | Using leucine zipper to facilitate αâ€synuclein assembly. FASEB Journal, 2008, 22, 3165-3174. | 0.5 | 10 | | 231 | Ifngr1 and Stat1 mediated canonical Ifn- \hat{l}^3 signaling drives nigrostriatal degeneration. Neurobiology of Disease, 2018, 110, 133-141. | 4.4 | 10 | | 232 | Modulation of A \hat{l}^2 42 in vivo by \hat{l}^3 -secretase modulator in primates and humans. Alzheimer's Research and Therapy, 2015, 7, 55. | 6.2 | 9 | | 233 | Inefficient induction and spread of seeded tau pathology in P301L mouse model of tauopathy suggests inherent physiological barriers to transmission. Acta Neuropathologica, 2015, 130, 303-305. | 7.7 | 9 | | 234 | Intracerebral Expression of AAV-APOE4 Is Not Sufficient to Alter Tau Burden in Two Distinct Models of Tauopathy. Molecular Neurobiology, 2020, 57, 1986-2001. | 4.0 | 9 | | # | Article | IF | Citations | |-----|--|------|-----------| | 235 | Utilizing minimally purified secreted rAAV for rapid and cost-effective manipulation of gene expression in the CNS. Molecular Neurodegeneration, 2020, 15, 15. | 10.8 | 9 | | 236 | Avoiding Unintended Toxicity. Science, 2009, 324, 603-604. | 12.6 | 8 | | 237 | Intracerebral but Not Peripheral Infection of Live Porphyromonas gingivalis Exacerbates Alzheimer's
Disease Like Amyloid Pathology in APP-TgCRND8 Mice. International Journal of Molecular Sciences,
2022, 23, 3328. | 4.1 | 8 | | 238 | Bringing amyloid into focus. Nature Biotechnology, 2005, 23, 552-554. | 17.5 | 7 | | 239 | Shifting a complex debate on $\langle b \rangle \hat{l}^3 \langle b \rangle$ -secretase cleavage and Alzheimer's disease. EMBO Journal, 2012, 31, 2237-2239. | 7.8 | 7 | | 240 | Deficiency in either COX-1 or COX-2 genes does not
affect amyloid beta protein burden in amyloid precursor protein transgenic mice. Biochemical and Biophysical Research Communications, 2016, 478, 286-292. | 2.1 | 7 | | 241 | Cardiac MLC2 kinase is localized to the Z-disc and interacts with \hat{l}_{\pm} -actinin2. Scientific Reports, 2019, 9, 12580. | 3.3 | 7 | | 242 | An anti-CRF antibody suppresses the HPA axis and reverses stress-induced phenotypes. Journal of Experimental Medicine, 2019, 216, 2479-2491. | 8.5 | 7 | | 243 | Welcome to Alzheimer's Research $\&$ Therapy. Alzheimer's Research and Therapy, 2009, $1, 1.$ | 6.2 | 6 | | 244 | Sorting Out Frontotemporal Dementia?. Neuron, 2010, 68, 601-603. | 8.1 | 6 | | 245 | Î ³ -Secretase modulators exhibit selectivity for modulation of APP cleavage but inverse Î ³ -secretase modulators do not. Alzheimer's Research and Therapy, 2020, 12, 61. | 6.2 | 6 | | 246 | Challenges in Passive Immunization Strategies to Treat Parkinson Disease. JAMA Neurology, 2018, 75, 1180. | 9.0 | 5 | | 247 | Nonsteroidal antiinflammatory drugs as therapeutic agents for Alzheimer's disease. Drug Development Research, 2002, 56, 415-420. | 2.9 | 4 | | 248 | "What kills neurons in neurodegenerative diseases?", a review series in an open access journal. Molecular Neurodegeneration, 2009, 4, 7. | 10.8 | 4 | | 249 | Modulating innate immune activation states impacts the efficacy of specific $\hat{Al^2}$ immunotherapy. Molecular Neurodegeneration, 2021, 16, 32. | 10.8 | 4 | | 250 | Pathogenic tau recruits wild-type tau into brain inclusions and induces gut degeneration in transgenic SPAM mice. Communications Biology, 2022, 5, 446. | 4.4 | 4 | | 251 | Peptide-based, irreversible inhibitors of \hat{l}^3 -secretase activity. Biochemical and Biophysical Research Communications, 2003, 305, 529-533. | 2.1 | 3 | | 252 | Cerebrospinal Biomarkers in Alzheimer Diseaseâ€"Potential Roles as Markers of Prognosis and Neuroplasticity. JAMA Neurology, 2016, 73, 508. | 9.0 | 3 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 253 | Aß40 displays amyloidogenic properties in the non-transgenic mouse brain but does not exacerbate Aß42 toxicity in Drosophila. Alzheimer's Research and Therapy, 2020, 12, 132. | 6.2 | 3 | | 254 | Right sizing funding for Alzheimer's disease. Alzheimer's Research and Therapy, 2011, 3, 17. | 6.2 | 2 | | 255 | Parkinson Disease and Autoimmune Disorders—What Can We Learn From Genome-wide Pleiotropy?.
JAMA Neurology, 2017, 74, 769. | 9.0 | 2 | | 256 | Soluble brain homogenates from diverse human and mouse sources preferentially seed diffuse $\hat{Al^2}$ plaque pathology when injected into newborn mouse hosts Free Neuropathology, 2022, 3, . | 3.0 | 2 | | 257 | Progress in Alzheimer's disease research circa 2013: Is the glass half empty or half full?. Alzheimer's Research and Therapy, 2013, 5, 26. | 6.2 | 1 | | 258 | Designing antibodies against LRRK2-targeted tau epitopes. PLoS ONE, 2018, 13, e0204367. | 2.5 | 1 | | 259 | P-346 Anti-A1–16, Aβ35–40 and Aβ35–42 single-chain variable region fragments as potential therapeutic agents for AD. Neurobiology of Aging, 2004, 25, S573. | 3.1 | O | | 260 | Recent Alzheimer's disease research highlights. Alzheimer's Research and Therapy, 2012, 4, 14. | 6.2 | 0 | | 261 | S1-01-04: Cholesterol metabolites as endogenous gamma-secretase modulators. , 2013, 9, P121-P122. | | O | | 262 | O2-06-03: CAN WE TARGET CORTICOTROPIN RELEASING FACTOR (CRF) FOR THERAPEUTIC BENEFIT IN AD?. , 2014, 10, P175-P175. | | 0 | | 263 | DDIS-06. AAV TOOLKIT ENABLING PRECISION COMBINATORIAL VIROTHERAPY FOR GLIOBLASTOMA.
Neuro-Oncology, 2018, 20, vi70-vi70. | 1.2 | O | | 264 | Betaâ€secretase regulation in aging and disease. FASEB Journal, 2007, 21, A278. | 0.5 | 0 |