
Marcus Jansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8074854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-glutathione mutants are impaired in growth but do not show an increased sensitivity to moderate water deficit. PLoS ONE, 2019, 14, e0220589.	2.5	14
2	Image processing for bioassays. , 2018, , 263-287.		0
3	Magnetic resonance imaging of sugar beet taproots in soil reveals growth reduction and morphological changes during foliar <i>Cercospora beticola</i> infestation. Journal of Experimental Botany, 2015, 66, 5543-5553.	4.8	16
4	HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging. Plant Methods, 2015, 11, 1.	4.3	180
5	Phenotype of <i>Arabidopsis thaliana</i> semi-dwarfs with deep roots and high growth rates under water-limiting conditions is independent of the <i>GA5</i> loss-of-function alleles. Annals of Botany, 2015, 116, 321-331.	2.9	22
6	Shoot and root phenotyping of the barley mutant kcs6 (3-ketoacyl-CoA synthase6) depleted in epicuticular waxes under water limitation. Plant Signaling and Behavior, 2015, 10, 1-3.	2.4	49
7	Non-Invasive Spectral Phenotyping Methods can Improve and Accelerate Cercospora Disease Scoring in Sugar Beet Breeding. Agriculture (Switzerland), 2014, 4, 147-158.	3.1	19
8	Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi Â. Plant Physiology, 2014, 166, 1621-1633.	4.8	76
9	Non-invasive Phenotyping Methodologies Enable the Accurate Characterization of Growth and Performance of Shoots and Roots. , 2014, , 173-206.		13
10	Regulation of growth by the trehalose pathway. Plant Signaling and Behavior, 2013, 8, e26626.	2.4	24
11	Non-invasive approaches for phenotyping of enhanced performance traits in bean. Functional Plant Biology, 2011, 38, 968.	2.1	120
12	Cyclic monoterpene mediated modulations of <i>Arabidopsis thaliana</i> phenotype. Plant Signaling and Behavior, 2010, 5, 832-838.	2.4	28
13	The barley mutant <i>emr2</i> shows enhanced resistance against several fungal leaf pathogens. Plant Breeding, 2009, 128, 124-129.	1.9	7
14	Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Functional Plant Biology, 2009, 36, 902.	2.1	274
15	Barley <i>Rom1</i> antagonizes <i>Rar1</i> function in <i>Magnaporthe oryzae</i> â€infected leaves by enhancing epidermal and diminishing mesophyll defence. New Phytologist, 2008, 180, 702-710.	7.3	10
16	The Barley Mutant <i>emr1</i> was Identified in a Mutational Screen for Resistance Against <i>Magnaporthe oryzae</i> . Plant Signaling and Behavior, 2007, 2, 278-279.	2.4	1
17	The barley mutant emr1 exhibits restored resistance against Magnaporthe oryzae in the hypersusceptible mlo-genetic background. Planta, 2007, 225, 1381-1391.	3.2	15
18	Competence of roots for race-specific resistance and the induction of acquired resistance against Magnaporthe oryzae. Molecular Plant Pathology, 2006, 7, 191-195.	4.2	14

#	Article	IF	CITATIONS
19	Acquired Resistance Functions in mlo Barley, Which Is Hypersusceptible to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2003, 16, 107-114.	2.6	40