Junfeng Fang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/807449/junfeng-fang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

122
papers5,649
citations35
h-index73
g-index127
ext. papers6,750
ext. citations10.8
avg, IF5.94
L-index

#	Paper	IF	Citations
122	Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells ACS Applied Materials & Samp; Interfaces, 2022,	9.5	3
121	Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells <i>Science</i> , 2022 , 375, 434-437	33.3	90
120	Photoconductive NiOx hole transport layer for efficient perovskite solar cells. <i>Chemical Engineering Journal</i> , 2022 , 435, 135140	14.7	2
119	Heating-insulating and semitransparent inorganic perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2022 , 240, 111683	6.4	2
118	Highly Foldable Perovskite Solar Cells Using Embedded Polyimide/Silver Nanowires Conductive Substrates. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101669	4.6	3
117	In Situ Stabilized CsPbI 3 for Air-Fabricated Inverted Inorganic Perovskite Photovoltaics with Wide Humidity Operating Window. <i>Advanced Functional Materials</i> , 2022 , 32, 2111116	15.6	4
116	Anomalous NH-Induced Resistance Enhancement in Halide Perovskite MAPbI Film and Gas Sensing Performance. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11339-11345	6.4	O
115	A Universal Dopant-Free Polymeric Hole-Transporting Material for Efficient and Stable All-Inorganic and Organic-Inorganic Perovskite Solar Cells. <i>ACS Applied Materials & Discounty Interfaces</i> , 2021 ,	9.5	5
114	A conjugated ligand interfacial modifier for enhancing efficiency and operational stability of planar perovskite solar cells. <i>Chemical Engineering Journal</i> , 2021 , 412, 128680	14.7	7
113	Crystallization Control and Defect Passivation via a Cross-Linking Additive for High-Performance FAPbBr3 Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 12551-12559	3.8	3
112	Complete genome sequence of Streptomyces sp. SCSIO 03032 isolated from Indian Ocean sediment, producing diverse bioactive natural products. <i>Marine Genomics</i> , 2021 , 55, 100803	1.9	4
111	Structures and absolute configurations of phomalones from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 6030-6037	3.9	2
110	All annealing-free solution-processed highly flexible organic solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5425-5433	13	12
109	Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. <i>Nano-Micro Letters</i> , 2021 , 13, 44	19.5	27
108	The Main Progress of Perovskite Solar Cells in 2020-2021. <i>Nano-Micro Letters</i> , 2021 , 13, 152	19.5	78
107	Radical Form of PbI: A New Defect Passivator for Efficient Perovskite Solar Cells. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	2
106	Chemical anti-corrosion strategy for stable inverted perovskite solar cells. <i>Science Advances</i> , 2020 , 6,	14.3	35

(2019-2020)

105	Boosted efficiency of conductive metal oxide-free pervoskite solar cells using poly(3-(4-methylamincarboxylbutyl)thiophene) buffer layers. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 284001	3	4
104	Achieving over 21% efficiency in inverted perovskite solar cells by fluorinating a dopant-free hole transporting material. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6517-6523	13	39
103	Reducing energy loss and stabilising the perovskite/poly (3-hexylthiophene) interface through a polyelectrolyte interlayer. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6546-6554	13	19
102	Dual-Protection Strategy for High-Efficiency and Stable CsPbI2Br Inorganic Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 676-684	20.1	68
101	Synergistic effects of the processing solvent and additive on the production of efficient all-polymer solar cells. <i>Nanoscale</i> , 2020 , 12, 4945-4952	7.7	12
100	Kirigami-Based Highly Stretchable Thin Film Solar Cells That Are Mechanically Stable for More than 1000 Cycles. <i>ACS Nano</i> , 2020 , 14, 1560-1568	16.7	22
99	Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes. <i>Solar Rrl</i> , 2020 , 4, 1900543	37.1	15
98	Heterologous expression of the trichostatin gene cluster and functional characterization of N-methyltransferase TsnB8. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 3649-3653	3.9	5
97	Origin of High Efficiency and Long-Term Stability in Ionic Liquid Perovskite Photovoltaic. <i>Research</i> , 2020 , 2020, 2616345	7.8	28
96	Red-Carbon-Quantum-Dot-Doped SnO Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1906374	24	141
95	Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes. Journal of Materials Chemistry A, 2020 , 8, 21007-21015	13	19
94	Tailoring In Situ Healing and Stabilizing Post-Treatment Agent for High-Performance Inverted CsPbI3 Perovskite Solar Cells with Efficiency of 16.67%. <i>ACS Energy Letters</i> , 2020 , 5, 3314-3321	20.1	30
93	Mutation of an atypical oxirane oxyanion hole improves regioselectivity of the 在fold epoxide hydrolase Alp1U. <i>Journal of Biological Chemistry</i> , 2020 , 295, 16987-16997	5.4	2
92	Self-Doping a Hole-Transporting Layer Based on a Conjugated Polyelectrolyte Enables Efficient and Stable Inverted Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2020 , 3, 11724-11731	6.1	7
91	Highly Efficient Nonfullerene Acceptor with Sulfonyl-Based Ending Groups. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 49659-49665	9.5	5
90	Naphthalene diimide based polymer as electron transport layer in inverted perovskite solar cells. <i>Organic Electronics</i> , 2020 , 87, 105959	3.5	6
89	Effective Surface Treatment for High-Performance Inverted CsPbIBr Perovskite Solar Cells with Efficiency of 15.92. <i>Nano-Micro Letters</i> , 2020 , 12, 170	19.5	24
88	Highly Foldable and Efficient Paper-Based Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 1800317	7.1	29

87	Barium acetate as an additive for high performance perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 11411-11418	7.1	5
86	Energy level-modulated non-fullerene small molecule acceptors for improved VOC and efficiency of inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3336-3343	13	21
85	Spontaneous grain polymerization for efficient and stable perovskite solar cells. <i>Nano Energy</i> , 2019 , 58, 825-833	17.1	47
84	Ultrasound Stimulation Modulates Voltage-Gated Potassium Currents Associated With Action Potential Shape in Hippocampal CA1 Pyramidal Neurons. <i>Frontiers in Pharmacology</i> , 2019 , 10, 544	5.6	11
83	Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes. <i>Solar Energy</i> , 2019 , 188, 158-163	6.8	25
82	Liquid metal acetate assisted preparation of high-efficiency and stable inverted perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14136-14144	13	24
81	Efficient light harvesting with a nanostructured organic electron-transporting layer in perovskite solar cells. <i>Nanoscale</i> , 2019 , 11, 9281-9286	7.7	6
80	In situ grown silver bismuth sulfide nanorod arrays and their application to solar cells. <i>CrystEngComm</i> , 2019 , 21, 3137-3141	3.3	7
79	Efficient methylammonium lead trihalide perovskite solar cells with chloroformamidinium chloride (Cl-FACl) as an additive. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8078-8084	13	38
78	Assessment of toxicity reduction in ZnS substituted CdS:P3HT bulk heterojunction solar cells fabricated using a single-source precursor deposition. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 948-955	5.8	2
77	Suppressing the ions-induced degradation for operationally stable perovskite solar cells. <i>Nano Energy</i> , 2019 , 64, 103962	17.1	36
76	Efficient Passivation with Lead Pyridine-2-Carboxylic for High-Performance and Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2019 , 9, 1901852	21.8	95
75	A dopant-free polyelectrolyte hole-transport layer for high efficiency and stable planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18898-18905	13	28
74	Solution-Processed MoOx Hole-Transport Layer with F4-TCNQ Modification for Efficient and Stable Inverted Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5862-5870	6.1	23
73	Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19881-19888	13	17
72	Inverted All-Inorganic CsPbI2Br Perovskite Solar Cells with Promoted Efficiency and Stability by Nickel Incorporation. <i>Chemistry of Materials</i> , 2019 , 31, 9032-9039	9.6	54
71	Insight into the Efficiency and Stability of All-Polymer Solar Cells Based on Two 2D-Conjugated Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors: Achieving High Fill Factor of 78. ACS Applied Materials & Donors: National Polymer Donors:	3 3 -434	40 ⁶
70	Parameters in planar quantum dot-polymer solar cell: Tuned by QD Eg, ligand exchange and fabrication process. <i>Organic Electronics</i> , 2019 , 69, 1-6	3.5	2

(2017-2019)

69	Benzobis(thiadiazole)-based small molecules as efficient electron transporting materials in perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 191, 437-443	6.4	5
68	Multichannel Strategies to Produce Stabilized Azaphenalene Diradicals: A Predictable Model to Generate Self-Doped Cathode Interfacial Layers for Organic Photovoltaics. <i>Advanced Functional Materials</i> , 2019 , 29, 1806125	15.6	15
67	Perylene Diimide-Based Zwitterion as the Cathode Interlayer for High-Performance Nonfullerene Polymer Solar Cells. <i>ACS Applied Materials & Materials </i>	9.5	20
66	Small Molecule Interlayers in Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1702730	21.8	45
65	Electron-Transport-Layer-Assisted Crystallization of Perovskite Films for High-Efficiency Planar Heterojunction Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1706317	15.6	63
64	High-Performance Organic-Silicon Heterojunction Solar Cells by Using Al-Doped ZnO as Cathode Interlayer. <i>Solar Rrl</i> , 2018 , 2, 1700223	7.1	5
63	The study of colloidal lead bromide perovskite nanocrystals and its application in hybrid solar cells. <i>Applied Nanoscience (Switzerland)</i> , 2018 , 8, 715-721	3.3	1
62	Recent Advance in Solution-Processed Organic Interlayers for High-Performance Planar Perovskite Solar Cells. <i>Advanced Science</i> , 2018 , 5, 1800159	13.6	64
61	Band Offset Engineering in ZnSnN2-Based Heterojunction for Low-Cost Solar Cells. <i>ACS Photonics</i> , 2018 , 5, 2094-2099	6.3	25
60	Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6982-6987	7.1	11
59	16% efficient silicon/organic heterojunction solar cells using narrow band-gap conjugated polyelectrolytes based low resistance electron-selective contacts. <i>Nano Energy</i> , 2018 , 43, 117-123	17.1	31
58	Realization of Foldable Polymer Solar Cells Using Ultrathin Cellophane Substrates and ZnO/Ag/ZnO Transparent Electrodes (Solar RRL 1002018). <i>Solar Rrl</i> , 2018 , 2, 1870218	7.1	2
57	High-Performance All-Polymer Solar Cells with a High Fill Factor and a Broad Tolerance to the Donor/Acceptor Ratio. <i>ACS Applied Materials & Donor (Solution Research)</i> 10, 38302-38309	9.5	26
56	In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. <i>Nature Communications</i> , 2018 , 9, 3806	17.4	159
55	Realization of Foldable Polymer Solar Cells Using Ultrathin Cellophane Substrates and ZnO/Ag/ZnO Transparent Electrodes. <i>Solar Rrl</i> , 2018 , 2, 1800123	7.1	21
54	Electrolytes as Cathode Interlayers in Inverted Organic Solar Cells: Influence of the Cations on Bias-Dependent Performance. <i>ACS Applied Materials & Dependent Performance</i> .	9.5	10
53	Naphthothiadiazole-Based Near-Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. <i>Advanced Functional Materials</i> , 2017 , 27, 1606384	15.6	136
52	Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode Interlayer. <i>Advanced Science</i> , 2017 , 4, 1700053	13.6	46

51	Fullerene-Free Organic Solar Cells with Efficiency Over 12% Based on EDTAInO Hybrid Cathode Interlayer. <i>Chemistry of Materials</i> , 2017 , 29, 4176-4180	9.6	78
50	Cathode modification in planar hetero-junction perovskite solar cells through a small-molecule zwitterionic carboxylate. <i>Organic Electronics</i> , 2017 , 48, 204-210	3.5	20
49	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregation-Induced Emission for High-Efficiency, Low Efficiency Roll-Off OLEDs. <i>Advanced Optical Materials</i> , 2017 , 5, 1700145	8.1	39
48	A PTB7-based narrow band-gap conjugated polyelectrolyte as an efficient cathode interlayer in PTB7-based polymer solar cells. <i>Chemical Communications</i> , 2017 , 53, 2005-2008	5.8	25
47	A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 10777-10784	7.1	22
46	Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer. <i>ACS Applied Materials & Description of Materi</i>	9.5	58
45	Efficient and Hysteresis-Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer. <i>Advanced Energy Materials</i> , 2017 , 7, 1701144	21.8	97
44	Tetrathiafulvalene derivative as a new hole-transporting material for highly efficient perovskite solar cell. <i>Dyes and Pigments</i> , 2017 , 147, 113-119	4.6	30
43	Triazine-core-containing star-shaped compounds as cathode interlayers for efficient inverted polymer solar cells. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 11278-11283	7.1	6
42	Realizing High Performance Inverted Organic Solar Cells via a Nonconjugated Electrolyte Cathode Interlayer. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 26244-26248	3.8	12
41	High-Performance Polymer Solar Cells with Zinc Sulfide-Phenanthroline Derivatives as the Hybrid Cathode Interlayers. <i>ACS Applied Materials & Description</i> (2016), 8, 2688-93	9.5	7
40	Ideal rear contact formed via employing a conjugated polymer for Si/PEDOT:PSS hybrid solar cells. <i>RSC Advances</i> , 2016 , 6, 16010-16017	3.7	29
39	CdSphenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 297-302	13	4
38	High-Performance Polymer Solar Cells with PCE of 10.42% via Al-Doped ZnO Cathode Interlayer. <i>Advanced Materials</i> , 2016 , 28, 7405-12	24	119
37	Realizing Highly Efficient Inverted Photovoltaic Cells by Combination of Nonconjugated Small-Molecule Zwitterions with Polyethylene Glycol. <i>ACS Applied Materials & Description</i> (2016), 8, 18593-9	9.5	12
36	Sulfonate anionic small molecule as a cathode interfacial material for highly efficient polymer solar cells. <i>RSC Advances</i> , 2016 , 6, 33523-33528	3.7	6
35	Bias-Enhanced Visible-Rejection of GaN Schottky Barrier Ultraviolet Photodetectors. <i>IEEE Photonics Technology Letters</i> , 2015 , 27, 994-997	2.2	17
34	Polyelectrolyte based hole-transporting materials for high performance solution processed planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15024-15029	13	83

(2013-2015)

33	benzothiadiazole and quaterthiophene: synthesis and effect of the molecular weight on device performance. <i>Polymer Chemistry</i> , 2015 , 6, 6050-6057	4.9	15
32	Neutral amine based alcohol-soluble interface materials for inverted polymer solar cells: realizing high performance and overcoming solvent erosion. <i>Chemical Communications</i> , 2015 , 51, 10182-5	5.8	22
31	Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. <i>Nano Letters</i> , 2015 , 15, 2756-62	11.5	286
30	Dramatic Enhancement of Power Conversion Efficiency in Polymer Solar Cells by Conjugating Very Low Ratio of Triplet Iridium Complexes to PTB7. <i>Advanced Materials</i> , 2015 , 27, 3546-52	24	59
29	Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. <i>Science</i> , 2015 , 350, 944-8	33.3	1732
28	Improved Device Performance of Polymer Solar Cells by Using a Thin Light-harvesting-Complex Modified ZnO Film as the Cathode Interlayer. <i>ACS Applied Materials & Description of the Polymer ACS Applied Materials & Description of the Polymer Science (Polymer Science) and Descripti</i>	9.5	25
27	Critical role of the external bias in improving the performance of polymer solar cells with a small molecule electrolyte interlayer. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 504-508	13	14
26	Regular Energetics at Conjugated Electrolyte/Electrode Modifier for Organic Electronics and their Implications on Design Rules. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500204	4.6	33
25	Dithiol treatments enhancing the efficiency of hybrid solar cells based on PTB7 and CdSe nanorods. <i>Nano Research</i> , 2015 , 8, 3045-3053	10	5
24	The effect of external electric field on the performance of perovskite solar cells. <i>Organic Electronics</i> , 2015 , 18, 107-112	3.5	30
23	Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials. <i>Advanced Energy Materials</i> , 2014 , 4, 1400359	21.8	93
22	Synthesis and photovoltaic properties of solution-processable star-shaped small molecules with triphenylamine as the core and alkyl cyanoacetate or 3-ethylrhodanine as the end-group. <i>RSC Advances</i> , 2014 , 4, 5591	3.7	23
21	Highly efficient inverted polymer solar cells using fullerene derivative modified TiO2 nanorods as the buffer layer. <i>RSC Advances</i> , 2014 , 4, 19529	3.7	13
20	Performance enhancement of inverted polymer solar cells with fullerene ester derivant-modified ZnO film as cathode buffer layer. <i>Solar Energy Materials and Solar Cells</i> , 2014 , 126, 36-41	6.4	27
19	Disodium edetate as a promising interfacial material for inverted organic solar cells and the device performance optimization. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 20569-73	9.5	19
18	High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer. Journal of Materials Chemistry A, 2013 , 1, 12413	13	50
17	Solution-processed hybrid cathode interlayer for inverted organic solar cells. <i>ACS Applied Materials & Eamp; Interfaces</i> , 2013 , 5, 10428-32	9.5	31
16	Panchromatic "Dye-Doped" Polymer Solar Cells: From Femtosecond Energy Relays to Enhanced Photo-Response. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 442-7	6.4	13

15	Donor Icceptor interface modification by zwitterionic conjugated polyelectrolytes in polymer photovoltaics. <i>Energy and Environmental Science</i> , 2013 , 6, 1589	35.4	46
14	Dithienosilole-bridged small molecules with different alkyl group substituents for organic solar cells exhibiting high open-circuit voltage. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7622	13	36
13	On the Bias in Simulated ENSO SSTA Meridional Widths of CMIP3 Models. <i>Journal of Climate</i> , 2013 , 26, 3173-3186	4.4	39
12	A Small-Molecule Zwitterionic Electrolyte without a EDelocalized Unit as a Charge-Injection Layer for High-Performance PLEDs. <i>Angewandte Chemie</i> , 2013 , 125, 3501-3504	3.6	2
11	Synthesis of Cu3BiS3 and AgBiS2 crystallites with controlled morphology using hypocrellin template and their catalytic role in the polymerization of alkylsilane. <i>Journal of Materials Science</i> , 2012 , 47, 4159-4166	4.3	21
10	Conjugated zwitterionic polyelectrolyte as the charge injection layer for high-performance polymer light-emitting diodes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 683-5	16.4	174
9	Diameter- and Shape-Controlled ZnS/Si Nanocables and Si Nanotubes for SERS and Photocatalytic Applications. <i>Journal of Nanomaterials</i> , 2011 , 2011, 1-8	3.2	1
8	Identifying and alleviating electrochemical side-reactions in light-emitting electrochemical cells. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4562-8	16.4	103
7	Electrochemical doping during light emission in polymer light-emitting electrochemical cells. <i>Physical Review B</i> , 2008 , 78,	3.3	24
6	Understanding the operation of light-emitting electrochemical cells. <i>Applied Physics Letters</i> , 2008 , 93, 063503	3.4	35
5	Isolation, chromosomal location, and expression analysis of putative powdery mildew resistance genes in wheat (Triticum aestivum L.). <i>Euphytica</i> , 2007 , 155, 125-133	2.1	4
4	Chromosome engineering of pollen wheat. <i>Science Bulletin</i> , 1999 , 44, 964-970		2
3	Humidity-Assisted Chlorination with Solid Protection Strategy for Efficient Air-Fabricated Inverted CsPbI3 Perovskite Solar Cells. <i>ACS Energy Letters</i> ,3661-3668	20.1	13
2	Enhancing the stability of perovskite solar cells through cross-linkable and hydrogen bonding multifunctional additives. <i>Journal of Materials Chemistry A</i> ,	13	10
1	Novel Ag-Mesh Transparent Hybrid Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Solar Cells. <i>Advanced Materials Interfaces</i> ,2200483	4.6	1