
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/80744/publications.pdf Version: 2024-02-01

ILE-KALCHEN

#	Article	IF	CITATIONS
1	A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts. Cell Stem Cell, 2010, 7, 51-63.	11.1	1,038
2	Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 71-79.	11.1	878
3	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell, 2021, 184, 1895-1913.e19.	28.9	512
4	H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nature Genetics, 2013, 45, 34-42.	21.4	440
5	Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell, 2020, 182, 734-743.e5.	28.9	398
6	Generation of Induced Pluripotent Stem Cell Lines from Tibetan Miniature Pig. Journal of Biological Chemistry, 2009, 284, 17634-17640.	3.4	367
7	Tet and TDG Mediate DNA Demethylation Essential for Mesenchymal-to-Epithelial Transition in Somatic Cell Reprogramming. Cell Stem Cell, 2014, 14, 512-522.	11.1	290
8	Vitamin C modulates TET1 function during somatic cell reprogramming. Nature Genetics, 2013, 45, 1504-1509.	21.4	266
9	Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nature Cell Biology, 2013, 15, 829-838.	10.3	201
10	Rapamycin and other longevityâ€promoting compounds enhance the generation of mouse induced pluripotent stem cells. Aging Cell, 2011, 10, 908-911.	6.7	188
11	The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity. Nature, 2021, 591, 322-326.	27.8	187
12	Chromatin Accessibility Dynamics during iPSC Reprogramming. Cell Stem Cell, 2017, 21, 819-833.e6.	11.1	180
13	The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters. Cell Research, 2015, 25, 80-92.	12.0	160
14	BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Research, 2011, 21, 205-212.	12.0	130
15	The oncogene c-Jun impedes somatic cell reprogramming. Nature Cell Biology, 2015, 17, 856-867.	10.3	112
16	Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nature Communications, 2019, 10, 34.	12.8	104
17	Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 2011, 21, 1424-1435.	12.0	103
18	SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Research, 2021, 31, 847-860.	12.0	102

#	Article	IF	CITATIONS
19	PRC2 specifies ectoderm lineages and maintains pluripotency in primed but not naÃ⁻ve ESCs. Nature Communications, 2017, 8, 672.	12.8	87
20	Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models. Cell Research, 2021, 31, 17-24.	12.0	86
21	Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Research, 2011, 21, 884-894.	12.0	84
22	Reprogramming of mouse and human somatic cells by highâ€performance engineered factors. EMBO Reports, 2011, 12, 373-378.	4.5	81
23	Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq. Molecular Cell, 2019, 73, 815-829.e7.	9.7	79
24	Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency. Cell Stem Cell, 2018, 22, 529-542.e5.	11.1	75
25	Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein and Cell, 2020, 11, 680-687.	11.0	75
26	Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein and Cell, 2021, 12, 717-733.	11.0	75
27	Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. Frontiers in Cell and Developmental Biology, 2020, 8, 760.	3.7	74
28	Identifying transposable element expression dynamics and heterogeneity during development at the single-cell level with a processing pipeline scTE. Nature Communications, 2021, 12, 1456.	12.8	74
29	SETDB1-Mediated Cell Fate Transition between 2C-Like and Pluripotent States. Cell Reports, 2020, 30, 25-36.e6.	6.4	64
30	Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nature Communications, 2019, 10, 3477.	12.8	60
31	Towards an Optimized Culture Medium for the Generation of Mouse Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2010, 285, 31066-31072.	3.4	55
32	XIST Derepression in Active X Chromosome Hinders Pig Somatic Cell Nuclear Transfer. Stem Cell Reports, 2018, 10, 494-508.	4.8	54
33	Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Research, 2017, 45, 2354-2367.	14.5	50
34	EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Research, 2015, 25, 135-138.	12.0	45
35	YTHDF2/3 Are Required for Somatic Reprogramming through Different RNA Deadenylation Pathways. Cell Reports, 2020, 32, 108120.	6.4	44
36	Systematic calibration of epitranscriptomic maps using a synthetic modification-free RNA library. Nature Methods, 2021, 18, 1213-1222.	19.0	44

#	Article	IF	CITATIONS
37	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41
38	Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. Cell Reports, 2019, 27, 3473-3485.e5.	6.4	41
39	EMT and MET as paradigms for cell fate switching. Journal of Molecular Cell Biology, 2012, 4, 66-69.	3.3	40
40	Cyclin-dependent Kinase-mediated Sox2 Phosphorylation Enhances the Ability of Sox2 to Establish the Pluripotent State. Journal of Biological Chemistry, 2015, 290, 22782-22794.	3.4	40
41	Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Research, 2020, 30, 21-33.	12.0	39
42	Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nature Immunology, 2018, 19, 279-290.	14.5	38
43	BMI1 enables interspecies chimerism with human pluripotent stem cells. Nature Communications, 2018, 9, 4649.	12.8	38
44	Vitamin C–dependent lysine demethylase 6 (KDM6)-mediated demethylation promotes a chromatin state that supports the endothelial-to-hematopoietic transition. Journal of Biological Chemistry, 2019, 294, 13657-13670.	3.4	35
45	CG14906 (mettl4) mediates m6A methylation of U2 snRNA in Drosophila. Cell Discovery, 2020, 6, 44.	6.7	35
46	Kdm2b Regulates Somatic Reprogramming through Variant PRC1 Complex-Dependent Function. Cell Reports, 2017, 21, 2160-2170.	6.4	34
47	BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nature Cell Biology, 2020, 22, 651-662.	10.3	34
48	Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Research, 2020, 48, 3869-3887.	14.5	34
49	Gadd45a is a heterochromatin relaxer that enhances <scp>iPS</scp> cell generation. EMBO Reports, 2016, 17, 1641-1656.	4.5	28
50	Passive DNA demethylation preferentially up-regulates pluripotency-related genes and facilitates the generation of induced pluripotent stem cells. Journal of Biological Chemistry, 2017, 292, 18542-18555.	3.4	27
51	Pyrimidoindole derivative UM171 enhances derivation of hematopoietic progenitor cells from human pluripotent stem cells. Stem Cell Research, 2017, 21, 32-39.	0.7	24
52	A Virus-Infected, Reprogrammed Somatic Cell–Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clinical Cancer Research, 2020, 26, 465-476.	7.0	24
53	JMJD3 acts in tandem with KLF4 to facilitate reprogramming to pluripotency. Nature Communications, 2020, 11, 5061.	12.8	24
54	Relaxed 3D genome conformation facilitates the pluripotent to totipotent-like state transition in embryonic stem cells. Nucleic Acids Research, 2021, 49, 12167-12177.	14.5	22

#	Article	IF	CITATIONS
55	Characterization and generation of human definitive multipotent hematopoietic stem/progenitor cells. Cell Discovery, 2020, 6, 89.	6.7	21
56	Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Scientific Reports, 2016, 5, 17691.	3.3	20
57	Chemical reprogramming of mouse embryonic and adult fibroblast into endoderm lineage. Journal of Biological Chemistry, 2017, 292, 19122-19132.	3.4	19
58	Rapid generation of ACE2 humanized inbred mouse model for COVID-19 with tetraploid complementation. National Science Review, 2021, 8, nwaa285.	9.5	19
59	Transposable element sequence fragments incorporated into coding and noncoding transcripts modulate the transcriptome of human pluripotent stem cells. Nucleic Acids Research, 2021, 49, 9132-9153.	14.5	19
60	Mitolysosome exocytosis, a mitophagy-independent mitochondrial quality control in flunarizine-induced parkinsonism-like symptoms. Science Advances, 2022, 8, eabk2376.	10.3	19
61	Reprogramming somatic cells to cells with neuronal characteristics by defined medium both in vitro and in vivo. Cell Regeneration, 2015, 4, 4:12.	2.6	16
62	SS18 regulates pluripotent-somatic transition through phase separation. Nature Communications, 2021, 12, 4090.	12.8	14
63	Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Cell Cycle, 2015, 14, 612-620.	2.6	10
64	Global Profiling of the Lysine Crotonylome in Different Pluripotent States. Genomics, Proteomics and Bioinformatics, 2021, 19, 80-93.	6.9	10
65	scDIOR: single cell RNA-seq data IO software. BMC Bioinformatics, 2022, 23, 16.	2.6	9
66	OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo. Stem Cell Research, 2015, 15, 395-402.	0.7	8
67	The Battle between TET Proteins and DNA Methylation for the Right Cell. Trends in Cell Biology, 2018, 28, 973-975.	7.9	7
68	Reprogramming in suspension. Nature Methods, 2012, 9, 449-451.	19.0	6
69	Hematopoietic lineage-converted T cells carrying tumor-associated antigen-recognizing TCRs effectively kill tumor cells. , 2020, 8, e000498.		6
70	MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death and Differentiation, 2022, 29, 1042-1054.	11.2	6
71	DNA Damage Induces Dynamic Associations of BRD4/P-TEFb With Chromatin and Modulates Gene Transcription in a BRD4-Dependent and -Independent Manner. Frontiers in Molecular Biosciences, 2020, 7, 618088.	3.5	5
72	Perspectives on somatic reprogramming: spotlighting epigenetic regulation and cellular heterogeneity. Current Opinion in Genetics and Development, 2020, 64, 21-25.	3.3	5

#	Article	IF	CITATIONS
73	AP-1 activity is a major barrier of human somatic cell reprogramming. Cellular and Molecular Life Sciences, 2021, 78, 5847-5863.	5.4	4
74	Human induced-T-to-natural killer cells have potent anti-tumour activities. Biomarker Research, 2022, 10, 13.	6.8	4
75	Epigenetic Landmarks During Somatic Reprogramming. IUBMB Life, 2016, 68, 854-857.	3.4	2
76	Generating a reporter mouse line marking medium spiny neurons in the developing striatum driven by Arpp21 cis-regulatory elements. Journal of Genetics and Genomics, 2018, 45, 673-676.	3.9	2
77	BMP4 drives primed to na \tilde{A} ve transition through PGC-like state. Nature Communications, 2022, 13, 2756.	12.8	2
78	Mouse embryonic stem cells resist c-Jun induced differentiation when in suspension. Cell Regeneration, 2018, 7, 16-21.	2.6	0
79	Fast and Efficient Mouse Pluripotency Reprogramming Using a Chemically-Defined Medium. Methods and Protocols, 2022, 5, 28.	2.0	0