Takashi Miyano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8074260/publications.pdf

Version: 2024-02-01

53	1,271	20	34
papers	citations	h-index	g-index
53	53	53	1163
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oocyte-derived growth factors promote development of antrum-like structures by porcine cumulus granulosa cells <i>in vitro</i> . Journal of Reproduction and Development, 2022, 68, 238-245.	0.5	1
2	Effects of oocyte-derived growth factors on the growth of porcine oocytes and oocyte–cumulus cell complexes <i>in vitro</i> . Journal of Reproduction and Development, 2021, 67, 273-281.	0.5	8
3	<i>In vitro</i> growth of bovine oocytes in oocyte-cumulus cell complexes and the effect of follicle stimulating hormone on the growth of oocytes. Journal of Reproduction and Development, 2021, 67, 5-13.	0.5	4
4	Reestablishment of transzonal projections and growth of bovine oocytes <i>in vitro</i> . Journal of Reproduction and Development, 2021, 67, 300-306.	0.5	9
5	Interaction between growing oocytes and granulosa cells in vitro. Reproductive Medicine and Biology, 2020, 19, 13-23.	1.0	95
6	Inhibition of PDE3A sustains meiotic arrest and gap junction of bovine growing oocytes in inÂvitro growth culture. Theriogenology, 2018, 118, 110-118.	0.9	19
7	GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes. Journal of Reproduction and Development, 2018, 64, 423-431.	0.5	24
8	The fertilization ability and developmental competence of bovine oocytes grown <i>in vitro</i> . Journal of Reproduction and Development, 2016, 62, 379-384.	0.5	13
9	Androgens promote the acquisition of maturation competence in bovine oocytes. Journal of Reproduction and Development, 2015, 61, 211-217.	0.5	13
10	Effect of estradiolâ€17β during <i>in vitro</i> growth culture on the growth, maturation, cumulus expansion and development of porcine oocytes from early antral follicles. Animal Science Journal, 2015, 86, 251-259.	0.6	23
11	Steroid hormones promote bovine oocyte growth and connection with granulosa cells. Theriogenology, 2014, 82, 605-612.	0.9	30
12	Hematoxylin Staining Reveals a Decrease in Nucleolar Diameter of Pig Oocytes Before Germinal Vesicle Breakdown. Journal of Reproduction and Development, 2013, 59, 500-505.	0.5	1
13	Effect of androstenedione on the growth and meiotic competence of bovine oocytes from early antral follicles. Zygote, 2012, 20, 407-415.	0.5	19
14	Foxo3 negatively regulates the activation of mouse primordial oocytes. Reproductive Medicine and Biology, 2012, 11, 193-199.	1.0	0
15	A combination of FSH and dibutyryl cyclic AMP promote growth and acquisition of meiotic competence of oocytes from early porcine antral follicles. Theriogenology, 2011, 75, 1602-1612.	0.9	29
16	p27Kip1 Negatively Regulates the Activation of Murine Primordial Oocytes. Journal of Reproduction and Development, 2011, 57, 217-222.	0.5	13
17	Bovine Oocytes in Secondary Follicles Grow in Medium Containing Bovine Plasma after Vitrification. Journal of Reproduction and Development, 2011, 57, 99-106.	0.5	4
18	FOXO3 Knockdown Accelerates Development of Bovine Primordial Follicles. Journal of Reproduction and Development, 2011, 57, 475-480.	0.5	10

#	Article	lF	CITATIONS
19	Vitrification of Fully Grown and Growing Porcine Oocytes Using Germinal Vesicle Transfer. Journal of Reproduction and Development, 2011, 57, 335-341.	0.5	7
20	Testosterone induces activation of porcine primordial follicles in vitro. Reproductive Medicine and Biology, 2011, 10, 21-30.	1.0	15
21	Histological and biological assessment of vitrified ovarian follicles from large animals. Reproductive Medicine and Biology, 2011, 10, 211-219.	1.0	1
22	Knockdown of FOXO3 induces primordial oocyte activation in pigs. Reproduction, 2010, 139, 337-348.	1.1	21
23	Development of vitrified bovine secondary and primordial follicles in xenografts. Theriogenology, 2010, 74, 817-827.	0.9	29
24	Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nature Cell Biology, 2008, 10, 42-52.	4.6	230
25	Ex Vivo Growth and Maturation of Oocytes in Farm Animals Biology of Reproduction, 2008, 78, 280-280.	1.2	0
26	Oocyte growth and follicular development in KIT-deficient Fas-knockout mice. Reproduction, 2007, 133, 117-125.	1.1	53
27	KIT-KIT Ligand in the Growth of Porcine Oocytes in Primordial Follicles. Journal of Reproduction and Development, 2007, 53, 1273-1281.	0.5	27
28	Oocyte growth and acquisition of meiotic competence. Society of Reproduction and Fertility Supplement, 2007, 63, 531-8.	0.2	9
29	<i>In Vitro</i> Growth of Mammalian Oocytes. Journal of Reproduction and Development, 2005, 51, 169-176.	0.5	20
30	Fertilization and development of bovine oocytes grown in female SCID mice. Zygote, 2005, 13, 309-315.	0.5	16
31	Effects of Long-Term Grafting on Follicular Growth in Porcine Ovarian Cortical Grafts Xenoplanted to Severe Combined Immunodeficient (SCID) Mice. Journal of Reproduction and Development, 2005, 51, 77-85.	0.5	15
32	Xenografting of Bovine Secondary Follicles into Male and Female SCID Mice. Journal of Mammalian Ova Research, 2004, 21, 157-161.	0.1	3
33	Xenografting of Bovine Secondary Follicles into Ovariectomized Female Severe Combined Immunodeficient Mice. Journal of Reproduction and Development, 2004, 50, 439-444.	0.5	10
34	G2/M transition of pig oocytes: How do oocytes initiate maturation?. Reproductive Medicine and Biology, 2003, 2, 91-99.	1.0	6
35	Bovine oocytes in secondary follicles grow and acquire meiotic competence in severe combined immunodeficient mice. Zygote, 2003, 11, 139-149.	0.5	29
36	Acquisition of meiotic competence in growing pig oocytes correlates with their ability to activate Cdc2 kinase and MAP kinase. Zygote, 2002, 10, 261-270.	0.5	23

#	Article	IF	Citations
37	Hypoxanthine Promotes the Acquisition of Meiotic Competence in Pig Oocytes from Early Antral Follicles during Growth Culture. Journal of Mammalian Ova Research, 2002, 19, 39-45.	0.1	7
38	Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes. Zygote, 2000, 8, 119-125.	0.5	72
39	Degradation of pig cyclin B1 molecules precedes MAP kinase dephosphorylation during fertilisation of the oocytes. Zygote, 2000, 8, 153-158.	0.5	11
40	Specific regulation of CENP-E and kinetochores during meiosis I/meiosis II transition in pig oocytes. Molecular Reproduction and Development, 2000, 56, 51-62.	1.0	40
41	Spindle Formation and Dynamics of \hat{I}^3 -Tubulin and Nuclear Mitotic Apparatus Protein Distribution During Meiosis in Pig and Mouse Oocytes1. Biology of Reproduction, 2000, 62, 1184-1192.	1.2	100
42	Tyrosine phosphorylation of p34cdc2 in metaphase II-arrested pig oocytes results in pronucleus formation without chromosome segregation. Molecular Reproduction and Development, 1999, 52, 107-116.	1.0	17
43	Promotion of follicular antrum formation by pig oocytes <i>in vitro</i> . Zygote, 1998, 6, 47-54.	0.5	23
44	Fertilization of bovine oocytes grown in vitro. Reproduction, Fertility and Development, 1997, 9, 781.	0.1	14
45	Inhibitory action of hypoxanthine on meiotic resumption of denuded pig follicular oocytes in vitro. The Journal of Experimental Zoology, 1995, 273, 70-75.	1.4	36
46	Association between p34cdc2 levels and meiotic arrest in pig oocytes during early growth. Zygote, 1995, 3, 325-332.	0.5	67
47	Detection of 25-kDa Anti-Agglutinin in Epididymal Plasma and Spermatozoa Collected from Various Regions of Boar Epididymis Journal of Reproduction and Development, 1995, 41, 113-121.	0.5	9
48	Ovarian Response to Exogenous Gonadotropins and In Vitro Fertilization of Follicular Oocytes in Prepubertal Chinese Jinhua Pigs Journal of Reproduction and Development, 1994, 40, 91-97.	0.5	2
49	Acquisition of maturational competence in in vitro grown mouse oocytes. The Journal of Experimental Zoology, 1993, 267, 543-547.	1.4	25
50	Effect of PMSG on Early Oocyte Growth and Follicular Development in Newborn Mouse Ovaries Cultured In Vitro Journal of Reproduction and Development, 1993, 39, 13-17.	0.5	3
51	Effect of concentration of sodium laurylsulfate on motility and acrosome morphology of frozen boar spermatozoa The Japanese Journal of Animal Reproduction, 1990, 36, 26-30.	0.2	6
52	Formation of the zona pellucida in relation to the oocyte growth in the mouse ovary The Japanese Journal of Animal Reproduction, 1988, 34, 61-66.	0.2	6
53	Growth of Mouse Oocytes in Ovaries Cultured In Vitro. Nihon Chikusan Gakkaiho, 1988, 59, 848-853.	0.0	4