Anthony A Grace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postpartum scarcity-adversity disrupts maternal behavior and induces a hypodopaminergic state in the rat dam and adult female offspring. Neuropsychopharmacology, 2022, 47, 488-496.	5.4	14
2	GABAA and NMDA receptor density alterations and their behavioral correlates in the gestational methylazoxymethanol acetate model for schizophrenia. Neuropsychopharmacology, 2022, 47, 687-695.	5.4	6
3	Adult stress exposure blunts dopamine system hyperresponsivity in a neurodevelopmental rodent model of schizophrenia. NPJ Schizophrenia, 2022, 8, 30.	3.6	1
4	The D2-like Dopamine Receptor Agonist Quinpirole Microinjected Into the Ventral Pallidum Dose-Dependently Inhibits the VTA and Induces Place Aversion. International Journal of Neuropsychopharmacology, 2022, 25, 590-599.	2.1	7
5	Use of prepubertal environment enrichment to prevent dopamine dysregulation in a neurodevelopmental rat model of schizophrenia risk. STAR Protocols, 2022, 3, 101215.	1.2	2
6	Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Molecular Psychiatry, 2022, 27, 2950-2967.	7.9	44
7	Nucleus reuniens inactivation reverses stress-induced hypodopaminergic state and altered hippocampal-accumbens synaptic plasticity. Neuropsychopharmacology, 2022, 47, 1513-1522.	5.4	1
8	Contingent Amygdala Inputs Trigger Heterosynaptic LTP at Hippocampus-To-Accumbens Synapses. Journal of Neuroscience, 2022, 42, 6581-6592.	3.6	5
9	Integrated metastate functional connectivity networks predict change in symptom severity in clinical high risk for psychosis. Human Brain Mapping, 2021, 42, 439-451.	3.6	2
10	Prepubertal Environmental Enrichment Prevents Dopamine Dysregulation and Hippocampal Hyperactivity in MAM Schizophrenia Model Rats. Biological Psychiatry, 2021, 89, 298-307.	1.3	27
11	Stress impacts corticoamygdalar connectivity in an age-dependent manner. Neuropsychopharmacology, 2021, 46, 731-740.	5.4	11
12	Reduced motor cortex GABABR function following chronic alcohol exposure. Molecular Psychiatry, 2021, 26, 383-395.	7.9	8
13	Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. International Journal of Molecular Sciences, 2021, 22, 4467.	4.1	27
14	Peripubertal mGluR2/3 Agonist Treatment Prevents Hippocampal Dysfunction and Dopamine System Hyperactivity in Adulthood in MAM Model of Schizophrenia. Schizophrenia Bulletin, 2021, 47, 1806-1814.	4.3	8
15	Interactions between hippocampal activity and striatal dopamine in people at clinical high risk for psychosis: relationship to adverse outcomes. Neuropsychopharmacology, 2021, 46, 1468-1474.	5.4	25
16	Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: prevention by N-acetylcysteine. Molecular Psychiatry, 2021, 26, 7679-7689.	7.9	18
17	Early Pup Removal Leads to Social Dysfunction and Dopamine Deficit in Late Postpartum Rats: Prevention by Social Support. Frontiers in Global Women S Health, 2021, 2,	2.3	9
18	Nicotine Administration Normalizes Behavioral and Neurophysiological Perturbations in the MAM Rodent Model of Schizophrenia. International Journal of Neuropsychopharmacology, 2021, 24, 979-987.	2.1	3

#	Article	IF	CITATIONS
19	Adverse clinical outcomes in people at clinical high-risk for psychosis related to altered interactions between hippocampal activity and glutamatergic function. Translational Psychiatry, 2021, 11, 579.	4.8	4
20	Insights on current and novel antipsychotic mechanisms from the MAM model of schizophrenia. Neuropharmacology, 2020, 163, 107632.	4.1	22
21	Nicotine Self-administration Is Not Increased in the Methylazoxymethanol Acetate Rodent Model of Schizophrenia. Nicotine and Tobacco Research, 2020, 22, 204-212.	2.6	4
22	Glutamatergic and dopaminergic function and the relationship to outcome in people at clinical high risk of psychosis: a multi-modal PET-magnetic resonance brain imaging study. Neuropsychopharmacology, 2020, 45, 641-648.	5.4	21
23	The pathophysiological impact of stress on the dopamine system is dependent on the state of the critical period of vulnerability. Molecular Psychiatry, 2020, 25, 3278-3291.	7.9	49
24	Postpartum changes in affect-related behavior and VTA dopamine neuron activity in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 97, 109768.	4.8	14
25	Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behavioural Brain Research, 2020, 379, 112367.	2.2	48
26	Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development. Schizophrenia Research, 2020, 223, 59-70.	2.0	63
27	The mCluR2/3 agonist pomaglumetad methionil normalizes aberrant dopamine neuron activity via action in the ventral hippocampus. Neuropsychopharmacology, 2020, 45, 2106-2113.	5.4	10
28	Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Frontiers in Psychiatry, 2020, 11, 613.	2.6	70
29	Adolescent Exposure to WIN 55212-2 Render the Nigrostriatal Dopaminergic Pathway Activated During Adulthood. International Journal of Neuropsychopharmacology, 2020, 23, 626-637.	2.1	4
30	Noninvasive ultrasound deep brain stimulation of nucleus accumbens induces behavioral avoidance. Science China Life Sciences, 2020, 63, 1328-1336.	4.9	17
31	Transcranial photoacoustic imaging of NMDA-evoked focal circuit dynamics in the rat hippocampus. Journal of Neural Engineering, 2020, 17, 025001.	3.5	21
32	Neural Circuitry of Novelty Salience Processing in Psychosis Risk: Association With Clinical Outcome. Schizophrenia Bulletin, 2020, 46, 670-679.	4.3	29
33	Functional differentiation in the human ventromedial frontal lobe: A dataâ€driven parcellation. Human Brain Mapping, 2020, 41, 3266-3283.	3.6	17
34	Adaptations in reward-related behaviors and mesolimbic dopamine function during motherhood and the postpartum period. Frontiers in Neuroendocrinology, 2020, 57, 100839.	5.2	24
35	Prelimbic medial prefrontal cortex disruption during adolescence increases susceptibility to helpless behavior in adult rats. European Neuropsychopharmacology, 2020, 35, 111-125.	0.7	8
36	Female rats are resistant to the long-lasting neurobehavioral changes induced by adolescent stress exposure. European Neuropsychopharmacology, 2019, 29, 1127-1137.	0.7	28

#	Article	IF	CITATIONS
37	41.1 EARLY LIFE STRESS COMBINED WITH PREFRONTAL DISRUPTION OF STRESS REGULATION RENDERS NORMAL RATS SUSCEPTIBLE TO THE EMERGENCE OF A HYPERDOPAMINERGIC STATE IN ADULTS. Schizophrenia Bulletin, 2019, 45, S155-S156.	4.3	0
38	α7 nicotinic receptor full agonist reverse basolateral amygdala hyperactivity and attenuation of dopaminergic neuron activity in rats exposed to chronic mild stress. European Neuropsychopharmacology, 2019, 29, 1343-1353.	0.7	14
39	Stress during critical periods of development and risk for schizophrenia. Schizophrenia Research, 2019, 213, 107-113.	2.0	68
40	Towards a Unifying Cognitive, Neurophysiological, and Computational Neuroscience Account of Schizophrenia. Schizophrenia Bulletin, 2019, 45, 1092-1100.	4.3	83
41	State-dependent effects of the D2 partial agonist aripiprazole on dopamine neuron activity in the MAM neurodevelopmental model of schizophrenia. Neuropsychopharmacology, 2019, 44, 572-580.	5.4	23
42	The Circuitry of Dopamine System Regulation and its Disruption in Schizophrenia: Insights Into Treatment and Prevention. Schizophrenia Bulletin, 2019, 45, 148-157.	4.3	109
43	Cortical GABA in Subjects at Ultra-High Risk of Psychosis: Relationship to Negative Prodromal Symptoms. International Journal of Neuropsychopharmacology, 2018, 21, 114-119.	2.1	32
44	Prefrontal GABA levels, hippocampal resting perfusion and the risk of psychosis. Neuropsychopharmacology, 2018, 43, 2652-2659.	5.4	45
45	Altered brain cannabinoid 1 receptor mRNA expression across postnatal development in the MAM model of schizophrenia. Schizophrenia Research, 2018, 201, 254-260.	2.0	12
46	$\hat{l}\pm7$ Nicotinic receptor-modulating agents reverse the hyperdopaminergic tone in the MAM model of schizophrenia. Neuropsychopharmacology, 2018, 43, 1712-1720.	5.4	18
47	Medial septum differentially regulates dopamine neuron activity in the rat ventral tegmental area and substantia nigra via distinct pathways. Neuropsychopharmacology, 2018, 43, 2093-2100.	5.4	24
48	Inhibitory Modulation of Orbitofrontal Cortex on Medial Prefrontal Cortex–Amygdala Information Flow. Cerebral Cortex, 2018, 28, 1-8.	2.9	35
49	Impaired contextual fear-conditioning in MAM rodent model of schizophrenia. Schizophrenia Research, 2018, 195, 343-352.	2.0	19
50	Medial septum activation produces opposite effects on dopamine neuron activity in the ventral tegmental area and substantia nigra in MAM vs. normal rats. NPJ Schizophrenia, 2018, 4, 17.	3.6	12
51	Increased Resting Hippocampal and Basal Ganglia Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort. Schizophrenia Bulletin, 2018, 44, 1323-1331.	4.3	70
52	Fear extinction disruption in a developmental rodent model of schizophrenia correlates with an impairment in basolateral amygdala-medial prefrontal cortex plasticity. Neuropsychopharmacology, 2018, 43, 2459-2467.	5.4	10
53	Cortical dopamine dysregulation in schizophrenia and its link to stress. Brain, 2018, 141, 1897-1899.	7.6	7
54	Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine. Neuropsychopharmacology, 2018, 43, 2418-2425.	5.4	27

#	Article	IF	CITATIONS
55	Prefrontal cortex modulates firing pattern in the nucleus reuniens of the midline thalamus via distinct corticothalamic pathways. European Journal of Neuroscience, 2018, 48, 3255-3272.	2.6	21
56	Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophrenia Bulletin, 2017, 43, sbw156.	4.3	54
57	Dopamine System Dysregulation and the Pathophysiology of Schizophrenia: Insights From the Methylazoxymethanol Acetate Model. Biological Psychiatry, 2017, 81, 5-8.	1.3	28
58	Impulse control disorders and levodopa-induced dyskinesias in Parkinson's disease: an update. Lancet Neurology, The, 2017, 16, 238-250.	10.2	280
59	Sex-Dependent Effects of Stress on Immobility Behavior and VTA Dopamine Neuron Activity: Modulation by Ketamine. International Journal of Neuropsychopharmacology, 2017, 20, 823-832.	2.1	85
60	The methylazoxymethanol acetate rat model: molecular and epigenetic effect in the developing prefrontal cortex. Journal of Neurochemistry, 2017, 143, 264-267.	3.9	3
61	The atypical dopamine receptor agonist <scp>SKF</scp> 83959 enhances hippocampal and prefrontal cortical neuronal network activity in a rat model of cognitive dysfunction. European Journal of Neuroscience, 2017, 46, 2015-2025.	2.6	6
62	Gilles de la Tourette's and the Disruption of Interneuron-Mediated Synchrony. Brain Topography, 2017, 30, 1-2.	1.8	11
63	Adolescent Stress as a Driving Factor for Schizophrenia Development—A Basic Science Perspective. Schizophrenia Bulletin, 2017, 43, 486-489.	4.3	56
64	M102. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophrenia Bulletin, 2017, 43, S248-S248.	4.3	22
65	Involvement of Infralimbic Prefrontal Cortex but not Lateral Habenula in Dopamine Attenuation After Chronic Mild Stress. Neuropsychopharmacology, 2017, 42, 904-913.	5.4	70
66	Dopamine System Dysregulation in Major Depressive Disorders. International Journal of Neuropsychopharmacology, 2017, 20, 1036-1046.	2.1	444
67	Psychogenic Stress Activates C-Fos in Nucleus Accumbens-Projecting Neurons of the Hippocampal Ventral Subiculum. International Journal of Neuropsychopharmacology, 2017, 20, 855-860.	2.1	10
68	Divergent effects of acute and repeated quetiapine treatment on dopamine neuron activity in normal vs. chronic mild stress induced hypodopaminergic states. Translational Psychiatry, 2017, 7, 1275.	4.8	12
69	Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and î"FosB. Frontiers in Pharmacology, 2017, 8, 924.	3.5	55
70	Fastâ€scan cyclic voltammetry demonstrates that Lâ€DOPA produces doseâ€dependent, regionally selective bimodal effects on striatal dopamine kinetics <i>inÂvivo</i> . Journal of Neurochemistry, 2016, 136, 1270-1283.	3.9	16
71	Amygdala Hyperactivity in MAM Model of Schizophrenia is Normalized by Peripubertal Diazepam Administration. Neuropsychopharmacology, 2016, 41, 2455-2462.	5.4	43
72	Adolescence as a period of vulnerability and intervention in schizophrenia: Insights from the MAM model. Neuroscience and Biobehavioral Reviews, 2016, 70, 260-270.	6.1	93

#	Article	IF	CITATIONS
73	A heuristic model for working memory deficit in schizophrenia. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2696-2705.	2.4	12
74	Loss of Parvalbumin in the Hippocampus of MAM Schizophrenia Model Rats Is Attenuated by Peripubertal Diazepam. International Journal of Neuropsychopharmacology, 2016, 19, pyw065.	2.1	27
75	The Nucleus Reuniens of the Midline Thalamus Gates Prefrontal-Hippocampal Modulation of Ventral Tegmental Area Dopamine Neuron Activity. Journal of Neuroscience, 2016, 36, 8977-8984.	3.6	48
76	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	1.3	2
77	Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nature Reviews Neuroscience, 2016, 17, 524-532.	10.2	753
78	COMT and ANKK1 Genetics Interact With Depression to Influence Behavior Following Severe TBI. Neurorehabilitation and Neural Repair, 2016, 30, 920-930.	2.9	32
79	Withdrawal from Acute Amphetamine Induces an Amygdala-Driven Attenuation of Dopamine Neuron Activity: Reversal by Ketamine. Neuropsychopharmacology, 2016, 41, 619-627.	5.4	46
80	Behavioral Effects of the Benzodiazepine-Positive Allosteric Modulator SH-053-2'F-S-CH3 in an Immune-Mediated Neurodevelopmental Disruption Model. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	31
81	Effects of Pubertal Cannabinoid Administration on Attentional Set-Shifting and Dopaminergic Hyper-Responsivity in a Developmental Disruption Model of Schizophrenia. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	50
82	Ventral striatal dopamine reflects behavioral and neural signatures of model-based control during sequential decision making. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1595-1600.	7.1	200
83	Linking neuroscience with modern concepts of impulse control disorders in Parkinson's disease. Movement Disorders, 2015, 30, 141-149.	3.9	84
84	Translating the MAM model of psychosis to humans. Trends in Neurosciences, 2015, 38, 129-138.	8.6	139
85	Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: Focus on the subiculum. NeuroImage, 2015, 113, 44-60.	4.2	76
86	Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142516.	2.6	131
87	Dopaminergic Modulation of Lateral Amygdala Neuronal Activity: Differential D1 and D2 Receptor Effects on Thalamic and Cortical Afferent Inputs. International Journal of Neuropsychopharmacology, 2015, 18, pyv015-pyv015.	2.1	15
88	Nucleus accumbens high-frequency stimulation selectively impacts nigrostriatal dopaminergic neurons. International Journal of Neuropsychopharmacology, 2014, 17, 421-427.	2.1	14
89	Corresponding decrease in neuronal markers signals progressive parvalbumin neuron loss in MAM schizophrenia model. International Journal of Neuropsychopharmacology, 2014, 17, 1609-1619.	2.1	44
90	Prior Antipsychotic Drug Treatment Prevents Response to Novel Antipsychotic Agent in the Methylazoxymethanol Acetate Model of Schizophrenia. Schizophrenia Bulletin, 2014, 40, 341-350.	4.3	62

#	Article	IF	CITATIONS
91	Role of the Prefrontal Cortex in Altered Hippocampal–Accumbens Synaptic Plasticity in a Developmental Animal Model of Schizophrenia. Cerebral Cortex, 2014, 24, 968-977.	2.9	35
92	Amygdala-Ventral Pallidum Pathway Decreases Dopamine Activity After Chronic Mild Stress in Rats. Biological Psychiatry, 2014, 76, 223-230.	1.3	181
93	Restoring Mood Balance in Depression: Ketamine Reverses Deficit in Dopamine-Dependent Synaptic Plasticity. Biological Psychiatry, 2014, 76, 927-936.	1.3	188
94	The Role of α5 GABA _A Receptor Agonists in the Treatment of Cognitive Deficits in Schizophrenia. Current Pharmaceutical Design, 2014, 20, 5069-5076.	1.9	52
95	Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Human Brain Mapping, 2013, 34, 1490-1499.	3.6	94
96	An inexpensive, charge-balanced rodent deep brain stimulation device: A step-by-step guide to its procurement and construction. Journal of Neuroscience Methods, 2013, 219, 324-330.	2.5	24
97	SaBer DBS: A fully programmable, rechargeable, bilateral, charge-balanced preclinical microstimulator for long-term neural stimulation. Journal of Neuroscience Methods, 2013, 213, 228-235.	2.5	35
98	Long-Term High Frequency Deep Brain Stimulation of the Nucleus Accumbens Drives Time-Dependent Changes in Functional Connectivity in the Rodent LimbicÂSystem. Brain Stimulation, 2013, 6, 274-285.	1.6	44
99	Deep brain stimulation of the ventral hippocampus restores deficits in processing of auditory evoked potentials in a rodent developmental disruption model of schizophrenia. Schizophrenia Research, 2013, 143, 377-383.	2.0	29
100	Evidence for impaired sound intensity processing during prepulse inhibition of the startle response in a rodent developmental disruption model of schizophrenia. Journal of Psychiatric Research, 2013, 47, 1630-1635.	3.1	11
101	Footshock-induced responses in ventral subiculum neurons are mediated by locus coeruleus noradrenergic afferents. European Neuropsychopharmacology, 2013, 23, 1320-1328.	0.7	7
102	<scp>l</scp> â€dopa treatment duration versus Parkinson's disease progression: The dorsalâ€ventral divide. Movement Disorders, 2013, 28, 120-121.	3.9	0
103	Dopamine Triggers Heterosynaptic Plasticity. Journal of Neuroscience, 2013, 33, 6759-6765.	3.6	29
104	DRD2/ANKK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/3 receptor binding in healthy controls and patients with major depressive disorder. International Journal of Neuropsychopharmacology, 2013, 16, 2095-2101.	2.1	51
105	Afferent Drive of Medial Prefrontal Cortex by Hippocampus and Amygdala is Altered in MAM-Treated Rats: Evidence for Interneuron Dysfunction. Neuropsychopharmacology, 2013, 38, 1871-1880.	5.4	24
106	Differential effects of acute and repeated stress on hippocampus and amygdala inputs to the nucleus accumbens shell. International Journal of Neuropsychopharmacology, 2013, 16, 2013-2025.	2.1	30
107	Activation and Inhibition of Neurons in the Hippocampal Ventral Subiculum by Norepinephrine and Locus Coeruleus Stimulation. Neuropsychopharmacology, 2013, 38, 285-292.	5.4	21
108	Abnormal Stress Responsivity in a Rodent Developmental Disruption Model of Schizophrenia. Neuropsychopharmacology, 2013, 38, 2131-2139.	5.4	52

#	Article	IF	CITATIONS
109	The Infralimbic Cortex Bidirectionally Modulates Mesolimbic Dopamine Neuron Activity via Distinct Neural Pathways. Journal of Neuroscience, 2013, 33, 16865-16873.	3.6	72
110	Peripubertal Diazepam Administration Prevents the Emergence of Dopamine System Hyperresponsivity in the MAM Developmental Disruption Model of Schizophrenia. Neuropsychopharmacology, 2013, 38, 1881-1888.	5.4	86
111	Some dopamine neurons may be more impulsive than others: Why differences in receptors and transporters can affect dopamine function in Parkinson's disease. Movement Disorders, 2013, 28, 1319-1320.	3.9	2
112	Amygdala Î ² -Noradrenergic Receptors Modulate Delayed Downregulation of Dopamine Activity following Restraint. Journal of Neuroscience, 2013, 33, 1441-1450.	3.6	37
113	Disruption of prefrontal cortical–hippocampal balance in a developmental model of schizophrenia: reversal by sulpiride. International Journal of Neuropsychopharmacology, 2013, 16, 507-512.	2.1	16
114	Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity. International Journal of Neuropsychopharmacology, 2013, 16, 1295-1307.	2.1	43
115	The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement. PLoS ONE, 2013, 8, e54108.	2.5	60
116	Postpartum and Depression Status are Associated With Lower [11C]raclopride BPND in Reproductive-Age Women. Neuropsychopharmacology, 2012, 37, 1422-1432.	5.4	33
117	Pilocarpine-induced temporal lobe epilepsy in the rat is associated with increased dopamine neuron activity. International Journal of Neuropsychopharmacology, 2012, 15, 957-964.	2.1	43
118	Shifting pharmacology of nicotine use and withdrawal: Breaking the cycle of drug abuse. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2697-2698.	7.1	2
119	Gestational Methylazoxymethanol Acetate Administration Alters Proteomic and Metabolomic Markers of Hippocampal Glutamatergic Transmission. Neuropsychopharmacology, 2012, 37, 319-320.	5.4	7
120	Divergent activation of ventromedial and ventrolateral dopamine systems in animal models of amphetamine sensitization and schizophrenia. International Journal of Neuropsychopharmacology, 2012, 15, 69-76.	2.1	39
121	Dopamine system dysregulation by the hippocampus: Implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology, 2012, 62, 1342-1348.	4.1	188
122	Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends in Neurosciences, 2012, 35, 422-430.	8.6	359
123	Blinded Prospective Evaluation of Computer-Based Mechanistic Schizophrenia Disease Model for Predicting Drug Response. PLoS ONE, 2012, 7, e49732.	2.5	30
124	Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress preâ€exposure. European Journal of Neuroscience, 2012, 35, 1312-1321.	2.6	111
125	Aversive Stimuli Alter Ventral Tegmental Area Dopamine Neuron Activity via a Common Action in the Ventral Hippocampus. Journal of Neuroscience, 2011, 31, 4280-4289.	3.6	148
126	Developmental pathology, dopamine, stress and schizophrenia. International Journal of Developmental Neuroscience, 2011, 29, 207-213.	1.6	91

#	Article	IF	CITATIONS
127	A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 2011, 34, 536-547.	8.6	382
128	Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends in Pharmacological Sciences, 2011, 32, 507-513.	8.7	283
129	Reorganization of Striatal Inhibitory Microcircuits Leads to Pathological Synchrony in the Basal Ganglia. Neuron, 2011, 71, 766-768.	8.1	1
130	Heterogeneous processing of amygdala and hippocampal inputs in the rostral and caudal subregions of the nucleus accumbens. International Journal of Neuropsychopharmacology, 2011, 14, 1301-1314.	2.1	36
131	A Novel $\hat{1}\pm 5$ GABAAR-Positive Allosteric Modulator Reverses Hyperactivation of the Dopamine System in the MAM Model of Schizophrenia. Neuropsychopharmacology, 2011, 36, 1903-1911.	5.4	143
132	Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Annals of the New York Academy of Sciences, 2011, 1216, 114-121.	3.8	130
133	Antipsychotic Drugs Rapidly Induce Dopamine Neuron Depolarization Block in a Developmental Rat Model of Schizophrenia. Journal of Neuroscience, 2011, 31, 12330-12338.	3.6	101
134	Antipsychotic drug-induced increases in ventral tegmental area dopamine neuron population activity via activation of the nucleus accumbens–ventral pallidum pathway. International Journal of Neuropsychopharmacology, 2010, 13, 845-860.	2.1	30
135	Dopamine System Dysregulation by the Ventral Subiculum as the Common Pathophysiological Basis for Schizophrenia Psychosis, Psychostimulant Abuse, and Stress. Neurotoxicity Research, 2010, 18, 367-376.	2.7	89
136	Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Movement Disorders, 2010, 25, 1568-1576.	3.9	45
137	Ventral Hippocampus, Interneurons, and Schizophrenia. Current Directions in Psychological Science, 2010, 19, 232-237.	5.3	26
138	Cortico-Basal Ganglia Reward Network: Microcircuitry. Neuropsychopharmacology, 2010, 35, 27-47.	5.4	820
139	Nucleus Accumbens Deep Brain Stimulation Produces Region-Specific Alterations in Local Field Potential Oscillations and Evoked Responses <i>In Vivo</i> . Journal of Neuroscience, 2009, 29, 5354-5363.	3.6	128
140	Entorhinal Cortex Inhibits Medial Prefrontal Cortex and Modulates the Activity States of Electrophysiologically Characterized Pyramidal Neurons In Vivo. Cerebral Cortex, 2009, 19, 658-674.	2.9	17
141	A Loss of Parvalbumin-Containing Interneurons Is Associated with Diminished Oscillatory Activity in an Animal Model of Schizophrenia. Journal of Neuroscience, 2009, 29, 2344-2354.	3.6	419
142	Timing-Dependent Regulation of Evoked Spiking in Nucleus Accumbens Neurons by Integration of Limbic and Prefrontal Cortical Inputs. Journal of Neurophysiology, 2009, 101, 1823-1835.	1.8	33
143	Identifying the neural circuitry of alcohol craving and relapse vulnerability. Addiction Biology, 2009, 14, 108-118.	2.6	264
144	From bench to bedside: translating new research from genetics and neuroimaging into treatment development for earlyâ€onset schizophrenia. Microbial Biotechnology, 2009, 3, 243-258.	1.7	6

#	Article	IF	CITATIONS
145	Gestational methylazoxymethanol acetate administration: A developmental disruption model of schizophrenia. Behavioural Brain Research, 2009, 204, 306-312.	2.2	204
146	The Intricacies of Dopamine Neuron Modulation. Biological Psychiatry, 2009, 65, 101-102.	1.3	9
147	Chronic cold stress increases excitatory effects of norepinephrine on spontaneous and evoked activity of basolateral amygdala neurons. International Journal of Neuropsychopharmacology, 2009, 12, 95.	2.1	40
148	Hippocampal dysfunction and disruption of dopamine system regulation in an animal model of schizophrenia. Neurotoxicity Research, 2008, 14, 97-104.	2.7	89
149	Physiology of the normal and dopamine-depleted basal ganglia: Insights into levodopa pharmacotherapy. Movement Disorders, 2008, 23, S560-S569.	3.9	51
150	Chronic cold exposure increases RGS7 expression and decreases α ₂ â€autoreceptorâ€mediated inhibition of noradrenergic locus coeruleus neurons. European Journal of Neuroscience, 2008, 27, 2433-2443.	2.6	38
151	It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists. Biological Psychiatry, 2008, 63, 725-727.	1.3	65
152	Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 2008, 31, 234-242.	8.6	896
153	Limbic and cortical information processing in the nucleus accumbens. Trends in Neurosciences, 2008, 31, 552-558.	8.6	300
154	The Rostral Anterior Cingulate Cortex Modulates the Efficiency of Amygdala-Dependent Fear Learning. Biological Psychiatry, 2008, 63, 821-831.	1.3	119
155	Selective Activation of Medial Prefrontal-to-Accumbens Projection Neurons by Amygdala Stimulation and Pavlovian Conditioned Stimuli. Cerebral Cortex, 2008, 18, 1961-1972.	2.9	46
156	Mechanisms of Dopaminergic and Serotonergic Neurotransmission in Tourette Syndrome: Clues from an In Vivo Neurochemistry Study with PET. Neuropsychopharmacology, 2008, 33, 1239-1251.	5.4	227
157	Critical Role of the Prefrontal Cortex in the Regulation of Hippocampus–Accumbens Information Flow. Journal of Neuroscience, 2008, 28, 9797-9805.	3.6	62
158	Amphetamine Activation of Hippocampal Drive of Mesolimbic Dopamine Neurons: A Mechanism of Behavioral Sensitization. Journal of Neuroscience, 2008, 28, 7876-7882.	3.6	114
159	Dopamine Modulation of Hippocampal-Prefrontal Cortical Interaction Drives Memory-Guided Behavior. Cerebral Cortex, 2008, 18, 1407-1414.	2.9	96
160	COMT Val108/158Met Polymorphism and the Modulation of Task-Oriented Behavior in Children with ADHD. Neuropsychopharmacology, 2008, 33, 3069-3077.	5.4	27
161	Noradrenergic Modulation of Basolateral Amygdala Neuronal Activity: Opposing Influences of α-2 and β Receptor Activation. Journal of Neuroscience, 2007, 27, 12358-12366.	3.6	140
162	High-Frequency Deep Brain Stimulation of the Nucleus Accumbens Region Suppresses Neuronal Activity and Selectively Modulates Afferent Drive in Rat Orbitofrontal Cortex <i>In Vivo</i> . Journal of Neuroscience, 2007, 27, 12601-12610.	3.6	177

#	Article	IF	CITATIONS
163	Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 2007, 30, 220-227.	8.6	883
164	The Yin and Yang of dopamine release: a new perspective. Neuropharmacology, 2007, 53, 583-587.	4.1	546
165	The Dopamine System and the Pathophysiology of Schizophrenia: A Basic Science Perspective. International Review of Neurobiology, 2007, 78, 41-68.	2.0	75
166	Aberrant Hippocampal Activity Underlies the Dopamine Dysregulation in an Animal Model of Schizophrenia. Journal of Neuroscience, 2007, 27, 11424-11430.	3.6	383
167	How can drug discovery for psychiatric disorders be improved?. Nature Reviews Drug Discovery, 2007, 6, 189-201.	46.4	217
168	Opposing Influence of Basolateral Amygdala and Footshock Stimulation on Neurons of the Central Amygdala. Biological Psychiatry, 2006, 59, 801-811.	1.3	36
169	A Neurobehavioral Systems Analysis of Adult Rats Exposed to Methylazoxymethanol Acetate on E17: Implications for the Neuropathology of Schizophrenia. Biological Psychiatry, 2006, 60, 253-264.	1.3	319
170	Alterations in Medial Prefrontal Cortical Activity and Plasticity in Rats with Disruption of Cortical Development. Biological Psychiatry, 2006, 60, 1259-1267.	1.3	81
171	Disruption of cortical-limbic interaction as a substrate for comorbidity. Neurotoxicity Research, 2006, 10, 93-101.	2.7	22
172	Cooperativity between hippocampal–prefrontal short-term plasticity through associative long-term potentiation. Brain Research, 2006, 1109, 37-44.	2.2	24
173	Dopamine D1 and D4 Receptor Subtypes Differentially Modulate Recurrent Excitatory Synapses in Prefrontal Cortical Pyramidal Neurons. Neuropsychopharmacology, 2006, 31, 318-338.	5.4	38
174	The Hippocampus Modulates Dopamine Neuron Responsivity by Regulating the Intensity of Phasic Neuron Activation. Neuropsychopharmacology, 2006, 31, 1356-1361.	5.4	227
175	Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs. Journal of Neuroscience, 2006, 26, 6458-6468.	3.6	166
176	Increased Occupancy of Dopamine Receptors in Human Striatum during Cue-Elicited Cocaine Craving. Neuropsychopharmacology, 2006, 31, 2716-2727.	5.4	280
177	Chronic Stress Increases the Plasmalemmal Distribution of the Norepinephrine Transporter and the Coexpression of Tyrosine Hydroxylase in Norepinephrine Axons in the Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 1571-1578.	3.6	93
178	Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nature Neuroscience, 2005, 8, 805-812.	14.8	511
179	A Subpopulation of Neurons in the Medial Prefrontal Cortex Encodes Emotional Learning with Burst and Frequency Codes through a Dopamine D4 Receptor-Dependent Basolateral Amygdala Input. Journal of Neuroscience, 2005, 25, 6066-6075.	3.6	218
180	Prenatal Disruption of Neocortical Development Alters Prefrontal Cortical Neuron Responses to Dopamine in Adult Rats. Neuropsychopharmacology, 2005, 30, 1426-1435.	5.4	57

#	Article	IF	CITATIONS
181	The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory. Neuron, 2005, 46, 703-713.	8.1	1,697
182	Dopamine-Dependent Interactions between Limbic and Prefrontal Cortical Plasticity in the Nucleus Accumbens: Disruption by Cocaine Sensitization. Neuron, 2005, 47, 255-266.	8.1	215
183	Chronic Cold Stress Alters Prefrontal Cortical Modulation of Amygdala Neuronal Activity in Rats. Biological Psychiatry, 2005, 58, 382-391.	1.3	85
184	Developing Predictive Animal Models and Establishing a Preclinical Trials Network for Assessing Treatment Effects on Cognition in Schizophrenia. Schizophrenia Bulletin, 2005, 31, 888-894.	4.3	87
185	Developmental Pathology, Dopamine, and Stress: A Model for the Age of Onset of Schizophrenia Symptoms. Schizophrenia Bulletin, 2004, 30, 875-900.	4.3	126
186	The Nitric Oxide-Guanylyl Cyclase Signaling Pathway Modulates Membrane Activity States and Electrophysiological Properties of Striatal Medium Spiny Neurons Recorded In Vivo. Journal of Neuroscience, 2004, 24, 1924-1935.	3.6	98
187	Corticotropin-Releasing Hormone Directly Activates Noradrenergic Neurons of the Locus Ceruleus Recorded <i>In Vitro</i> . Journal of Neuroscience, 2004, 24, 9703-9713.	3.6	150
188	The Catechol-O-Methyltransferase Polymorphism: Relations to the Tonic–Phasic Dopamine Hypothesis and Neuropsychiatric Phenotypes. Neuropsychopharmacology, 2004, 29, 1943-1961.	5.4	704
189	Reply to 'Extrasynaptic dopamine and phasic neuronal activity'. Nature Neuroscience, 2004, 7, 199-199.	14.8	8
190	Impaired brain development in the rat following prenatal exposure to methylazoxymethanol acetate at gestational day 17 and neurotrophin distribution. NeuroReport, 2004, 15, 1791-1795.	1.2	21
191	Developmental dysregulation of the dopamine system and the pathophysiology of schizophrenia. , 2004, , 273-294.		17
192	Electrophysiological Interactions between Striatal Glutamatergic and Dopaminergic Systems. Annals of the New York Academy of Sciences, 2003, 1003, 53-74.	3.8	98
193	Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience, 2003, 6, 968-973.	14.8	948
194	Forebrain dopamine systems — can they help us to understand psychosis?. European Psychiatry, 2003, 18, 27s-31s.	0.2	0
195	Dopamine Modulation of Membrane Excitability in Striatal Spiny Neurons is Altered in DARPP-32 Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 870-879.	2.5	18
196	Chronic Exposure to Cold Stress Alters Electrophysiological Properties of Locus Coeruleus Neurons Recorded In Vitro. Neuropsychopharmacology, 2003, 28, 63-72.	5.4	58
197	The Prefrontal Cortex Regulates Lateral Amygdala Neuronal Plasticity and Responses to Previously Conditioned Stimuli. Journal of Neuroscience, 2003, 23, 11054-11064.	3.6	297
198	Gating of Hippocampal-Evoked Activity in Prefrontal Cortical Neurons by Inputs from the Mediodorsal Thalamus and Ventral Tegmental Area. Journal of Neuroscience, 2003, 23, 3930-3943.	3.6	131

#	Article	IF	CITATIONS
199	Elevated Intrasynaptic Dopamine Release in Tourette's Syndrome Measured by PET. American Journal of Psychiatry, 2002, 159, 1329-1336.	7.2	236
200	Regulation of conditioned responses of basolateral amygdala neurons. Physiology and Behavior, 2002, 77, 489-493.	2.1	141
201	Cellular Mechanisms of Infralimbic and Prelimbic Prefrontal Cortical Inhibition and Dopaminergic Modulation of Basolateral Amygdala Neurons <i>In Vivo</i> . Journal of Neuroscience, 2002, 22, 324-337.	3.6	351
202	Opposite Influences of Endogenous Dopamine D ₁ and D ₂ Receptor Activation on Activity States and Electrophysiological Properties of Striatal Neurons: Studies Combining <i>In Vivo</i> Intracellular Recordings and Reverse Microdialysis. Journal of Neuroscience, 2002, 22, 294-304.	3.6	226
203	A Role for Electrotonic Coupling in the Striatum in the Expression of Dopamine Receptor-mediated Stereotypies,. Neuropsychopharmacology, 2002, 27, 980-992.	5.4	66
204	Regulation of striatal dopamine neurotransmission by nitric oxide: Effector pathways and signaling mechanisms. Synapse, 2002, 44, 227-245.	1.2	194
205	Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature, 2002, 417, 282-287.	27.8	330
206	Dopamine Attenuates Prefrontal Cortical Suppression of Sensory Inputs to the Basolateral Amygdala of Rats. Journal of Neuroscience, 2001, 21, 4090-4103.	3.6	308
207	Glutamatergic Afferents from the Hippocampus to the Nucleus Accumbens Regulate Activity of Ventral Tegmental Area Dopamine Neurons. Journal of Neuroscience, 2001, 21, 4915-4922.	3.6	475
208	The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction, 2000, 95, 119-128.	3.3	252
209	Striatal Nitric Oxide Signaling Regulates the Neuronal Activity of Midbrain Dopamine Neurons In Vivo. Journal of Neurophysiology, 2000, 83, 1796-1808.	1.8	91
210	Dopamine-mediated regulation of striatal neuronal and network interactions. Trends in Neurosciences, 2000, 23, S48-S56.	8.6	125
211	The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction, 2000, 95, 119-128.	3.3	222
212	Modulation of Basolateral Amygdala Neuronal Firing and Afferent Drive by Dopamine Receptor Activation <i>In Vivo</i> . Journal of Neuroscience, 1999, 19, 11027-11039.	3.6	216
213	Modulation of Cell Firing in the Nucleus Accumbens. Annals of the New York Academy of Sciences, 1999, 877, 157-175.	3.8	195
214	Response of the Ventral Pallidal/Mediodorsal Thalamic System to Antipsychotic Drug Administration: Involvement of the Prefrontal Cortex. Neuropsychopharmacology, 1998, 18, 352-363.	5.4	16
215	Striatal Extracellular Dopamine Levels in Rats with Haloperidol-Induced Depolarization Block of Substantia Nigra Dopamine Neurons. Journal of Neuroscience, 1998, 18, 5068-5077.	3.6	43
216	Effects of haloperidol on the activity and membrane physiology of substantia nigra dopamine neurons recorded in vitro. Brain Research, 1996, 713, 44-52.	2.2	31

#	Article	IF	CITATIONS
217	The tonic/phasic model of dopamine system regulation: its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug and Alcohol Dependence, 1995, 37, 111-129.	3.2	247
218	Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats. I. Basic physiology and response to corticostriatal fiber stimulation. Synapse, 1994, 16, 161-180.	1.2	27
219	Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: II. Membrane factors underlying paired-pulse response profiles. Synapse, 1994, 16, 195-210.	1.2	19
220	Identification and characterization of striatal cell subtypes using in vivo intracellular recording and dye-labeling in rats. III. Morphological correlates and compartmental localization. Synapse, 1994, 16, 231-254.	1.2	29
221	Modulation of dorsal thalamic cell activity by the ventral pallidum: Its role in the regulation of thalamocortical activity by the basal ganglia. Synapse, 1994, 18, 104-127.	1.2	120
222	Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse, 1993, 13, 135-160.	1.2	151
223	Depression of glutamatergic and gabaergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Synapse, 1993, 14, 221-242.	1.2	93
224	Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity. Synapse, 1992, 12, 287-303.	1.2	220
225	Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse, 1991, 7, 221-234.	1.2	62
226	Midbrain dopamine system electrophysiological functioning: A review and new hypothesis. Synapse, 1991, 9, 79-94.	1.2	151
227	The effects of dopamine-depleting brain lesions on the electrophysiological activity of rat substantia nigra dopamine neurons. Brain Research, 1990, 533, 203-212.	2.2	93
228	Acute haloperidol administration induces depolarization block of nigral dopamine neurons in rats after partial dopamine lesions. Neuroscience Letters, 1989, 96, 82-88.	2.1	43
229	In Vivo and in Vitro Intracellular Recordings from Rat Midbrain Dopamine Neurons. Annals of the New York Academy of Sciences, 1988, 537, 51-76.	3.8	61
230	An electrophysiologist's eye view of the basal ganglia. Behavioral and Brain Sciences, 1987, 10, 214-215.	0.7	1
231	Opposing effects of striatonigral feedback pathways on midbrain dopamine cell activity. Brain Research, 1985, 333, 271-284.	2.2	263
232	Paradoxical GABA excitation of nigral dopaminergic cells: Indirect mediation through reticulata inhibitory neurons. European Journal of Pharmacology, 1979, 59, 211-218.	3.5	365
233	Regulation of information flow in the nucleus accumbens: A model for the pathophysiology of schizophrenia , 0, , 123-157.		40