
Qin-Yu Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Convenient Procedure for Preparing BiOX–TiO ₂ Photoelectrocatalytic Electrodes from a Titanium–Oxo Compound-Modified Carbon Fiber Cloth. Inorganic Chemistry, 2022, 61, 4024-4032.	4.0	2
2	A Cyclic Titanium-Oxo Cluster with a Tetrathiafulvalene Connector as a Precursor for Highly Efficient Adsorbent of Cationic Dyes. Inorganic Chemistry, 2022, 61, 486-495.	4.0	7
3	A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework. Electrochimica Acta, 2022, 426, 140828.	5.2	3
4	Titanium oxo/alkoxyl clusters anchored with photoactive ligands. Coordination Chemistry Reviews, 2021, 430, 213664.	18.8	42
5	Copper-bipyridine grid frameworks incorporating redox-active tetrathiafulvalene: structures and supercapacitance. Dalton Transactions, 2021, 50, 11091-11098.	3.3	1
6	Tetrathiafulvalene-based double metal lead iodides: structures and electrical properties. Dalton Transactions, 2021, 50, 8120-8126.	3.3	1
7	Assembly of a Titanium-Oxo Cluster and a Bismuth Iodide Cluster, a Single-Source Precursor of a p–n-Type Photocatalyst. Inorganic Chemistry, 2021, 60, 9589-9597.	4.0	15
8	2D Lead Iodide Perovskite with Mercaptan-Containing Amine and Its Exceptional Water Stability. Inorganic Chemistry, 2021, 60, 9132-9140.	4.0	11
9	Mono- and Bismetalphenanthroline-Substituted Ti ₁₂ Clusters: Structural Variance and the Effect on Electronic State and Photocurrent Property. Inorganic Chemistry, 2021, 60, 12255-12262.	4.0	10
10	Tetrathiafulvalene–Cobalt Metal–Organic Frameworks for Lithium-Ion Batteries with Superb Rate Capability. Inorganic Chemistry, 2021, 60, 17074-17082.	4.0	9
11	(TMT–TTF)[Pb2.6/3â−¡0.4/312]3: a TTF-intercalated two-dimensional hybrid lead iodide: crystal structure and properties. New Journal of Chemistry, 2020, 44, 1263-1268.	2.8	1
12	Hybrid Lead Iodide Perovskites with Mixed Cations of Thiourea and Methylamine, From One Dimension to Three Dimensions. Inorganic Chemistry, 2020, 59, 15842-15847.	4.0	5
13	Molybdenum–titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Transactions, 2020, 49, 10516-10522.	3.3	6
14	Eu-phen Bonded Titanium Oxo-Clusters, Precursors for a Facile Preparation of High Luminescent Materials and Films. Inorganic Chemistry, 2020, 59, 10422-10429.	4.0	11
15	Cobalt Metal–Organic Frameworks Incorporating Redox-Active Tetrathiafulvalene Ligand: Structures and Effect of LLCT within the MOF on Photoelectrochemical Properties. Inorganic Chemistry, 2020, 59, 10727-10735.	4.0	23
16	Tetrathiafulvalene-Based Metal–Organic Framework as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52615-52623.	8.0	33
17	Lanthanide-titanium oxo-clusters, new precursors of multifunctional colloids for effective imaging and photodynamic therapy. Journal of Molecular Liquids, 2020, 317, 113946.	4.9	5
18	A Series of Tetrathiafulvalene Bismuth Chlorides: Effects of Oxidation States of Cations on Structures and Electric Properties. Inorganic Chemistry, 2020, 59, 5161-5169.	4.0	13

Qın-Yu Zhu

#	Article	IF	CITATIONS
19	A Series of Ti 6 Oxo Clusters Anchored with Arylamine Dyes: Effect of Dye Structures on Photocurrent Responses. Chemistry - an Asian Journal, 2019, 14, 3198-3204.	3.3	11
20	Molecular Model of Dye Sensitized Titanium Oxides Based on Aryl-Amine Dye Anchored Titanium Oxo Clusters. Inorganic Chemistry, 2019, 58, 9246-9252.	4.0	38
21	Water-Soluble Lanthanide–Titanium–Oxo Cluster, a Precursor for Biocompatible Nanomaterial. Inorganic Chemistry, 2019, 58, 14617-14625.	4.0	23
22	A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN. Inorganic Chemistry, 2019, 58, 15824-15831.	4.0	4
23	Perfect Self-Assembling of One-Dimensional Lead Iodides with Tetrahedral Cu ₄ I ₆ S ₄ Clusters: A High-Symmetry Cubic Packing. Inorganic Chemistry, 2019, 58, 2248-2251.	4.0	3
24	Effects of the Ligand Structures on the Photoelectric Activities, a Model Study Based on Titanium–Oxo Clusters Anchored with S-Heterocyclic Ligands. Inorganic Chemistry, 2019, 58, 2736-2743.	4.0	18
25	Bio-compatible fluorescent nano TiO materials prepared from titanium-oxo-cluster precursors. Chemical Communications, 2019, 55, 12360-12363.	4.1	13
26	Fluorescent Hydrogel Generated Conveniently from a Perylene Tetracarboxylate Derivative of Titanium(IV) Alkoxide. Inorganic Chemistry, 2018, 57, 1623-1629.	4.0	10
27	A Titanium Oxo Cluster Model Study of Synergistic Effect of Co-coordinated Dye Ligands on Photocurrent Responses. Inorganic Chemistry, 2018, 57, 7420-7427.	4.0	36
28	An MOF-like Interpenetrated 2D Plus 2D to 3D Inorganic Grid Assembled by Linear Inorganic Pillars, Structures, and Properties in Supercapacitance. Inorganic Chemistry, 2018, 57, 9153-9159.	4.0	9
29	Intracation and Interanion–Cation Charge-Transfer Properties of Tetrathiafulvalene-Bismuth-Halide Hybrids. Inorganic Chemistry, 2018, 57, 11113-11122.	4.0	14
30	Triphenylamine derived titanium oxo clusters: an approach to effective organic–inorganic hybrid dyes for photoactive electrodes. Chemical Communications, 2018, 54, 9933-9936.	4.1	22
31	Lanthanide–titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours. New Journal of Chemistry, 2018, 42, 11629-11634.	2.8	14
32	C–C to C conversion within a supramolecular framework of tetrathiafulvalene: a confinement effect and an oxygen related dehydrogenation. Chemical Communications, 2018, 54, 7334-7337.	4.1	5
33	Perovskite-Like Organic–Inorganic Hybrid Lead Iodide with a Large Organic Cation Incorporated within the Layers. Inorganic Chemistry, 2017, 56, 2467-2472.	4.0	24
34	Titanium Oxo Cluster with Six Peripheral Ferrocene Units and Its Photocurrent Response Properties for Saccharides. Inorganic Chemistry, 2017, 56, 6451-6458.	4.0	44
35	Effects of co-coordinated auxiliary ligands on the photoelectrochemical behaviour of titanium-alkoxide-dyes. Journal of Materials Chemistry A, 2017, 5, 18270-18275.	10.3	39
36	The effects of transition-metal doping and chromophore anchoring on the photocurrent response of titanium-oxo-clusters. Dalton Transactions, 2017, 46, 9639-9645.	3.3	32

Qın-Yu Zhu

#	Article	IF	CITATIONS
37	A Strong Donor–Acceptor System Based on a Metal Chalcogenide Cluster and Porphyrin. Inorganic Chemistry, 2017, 56, 8036-8044.	4.0	9
38	Confinement Effects of Metal–Organic Framework on the Formation of Charge-Transfer Tetrathiafulvalene Dimers. Inorganic Chemistry, 2016, 55, 12758-12765.	4.0	25
39	3D Copper Tetrathiafulvalene Redox-Active Network with 8-Fold Interpenetrating Diamond-like Topology. Inorganic Chemistry, 2016, 55, 9154-9157.	4.0	15
40	A lanthanide–titanium (LnTi ₁₁) oxo-cluster, a potential molecule based fluorescent labelling agent and photocatalyst. Dalton Transactions, 2016, 45, 17681-17686.	3.3	28
41	Ligand-to-Ligand Charge Transfer within Metal–Organic Frameworks Based on Manganese Coordination Polymers with Tetrathiafulvalene-Bicarboxylate and Bipyridine Ligands. Inorganic Chemistry, 2016, 55, 6496-6503.	4.0	60
42	Dye molecule bonded titanium alkoxide: a possible new type of dye for sensitized solar cells. Chemical Communications, 2016, 52, 4072-4075.	4.1	34
43	Effect of conjugated structures of bipyridinium cations on ion assembly and charge-transfer of their tetrathiafulvalene-bicarboxylate salts. CrystEngComm, 2016, 18, 1904-1910.	2.6	13
44	An ionic charge-transfer dyad prepared cost-effectively from a tetrathiafulvalene carboxylate anion and a TMPyP cation. Physical Chemistry Chemical Physics, 2016, 18, 2940-2948.	2.8	6
45	A tetrathiafulvalene-grafted titanium-oxo-cluster material: self-catalyzed crystal exfoliation and photocurrent response properties. Journal of Materials Chemistry C, 2015, 3, 409-415.	5.5	33
46	Fluorescence and energy transfer properties of heterometallic lanthanide-titanium oxo clusters coordinated with anthracenecarboxylate ligands. Dalton Transactions, 2015, 44, 1882-1888.	3.3	40
47	lon pair charge-transfer thiogermanate salts [MV]2Ge4S10·xSol: solvent induced crystal transformation and photocurrent responsive properties. Dalton Transactions, 2014, 43, 12582.	3.3	14
48	A New Type of Charge-Transfer Salts Based on Tetrathiafulvalene–Tetracarboxylate Coordination Polymers and Methyl Viologen. Inorganic Chemistry, 2014, 53, 3480-3487.	4.0	48
49	Role of the Coordination Center in Photocurrent Behavior of a Tetrathiafulvalene and Metal Complex Dyad. Inorganic Chemistry, 2014, 53, 3078-3087.	4.0	17
50	Titanium–Oxo Cluster with 9-Anthracenecarboxylate Antennae: A Fluorescent and Photocurrent Transfer Material. Inorganic Chemistry, 2014, 53, 7233-7240.	4.0	59
51	Perylene carboxylate-modified titanium–oxide gel, a functional material with photoswitchable fluorescence properties. Journal of Materials Chemistry C, 2013, 1, 7973.	5.5	11
52	Metal–phenanthroline fused Ti17 clusters, a single molecular source for sensitized photoconductive films. Journal of Materials Chemistry A, 2013, 1, 9862.	10.3	71
53	Synthetic methods and structural study of coordination polymers of Cd(<scp>ii</scp>) and Co(<scp>ii</scp>) with tetrathiafulvalene–tetracarboxylate. CrystEngComm, 2013, 15, 1086-1094.	2.6	20
54	lonic Crystals of {[Ni(phen) ₃] ₂ Ge ₄ S ₁₀ }· <i>x</i> Sol, Showing Solid-State Solvatochromism and Rapid Solvent-Induced Recrystallization. Inorganic Chemistry, 2012, 51, 1330-1335.	4.0	25

#	Article	IF	CITATIONS
55	Titanium–oxo–Clusters with Dicarboxylates: Single-Crystal Structure and Photochromic Effect. Inorganic Chemistry, 2012, 51, 8982-8988.	4.0	69

Anionâ \in "cation charge-transfer properties and spectral studies of [M(phen)3][Cd4(SPh)10] (M = Ru, Fe,) Tj ETQq0.0.0 rgBT $\frac{10}{19}$ verlock 1

57	A paddlewheel dinuclear Cu(II) compound coordinated with TTF-py redox ligand. Synthetic Metals, 2010, 160, 713-717.	3.9	17
58	Tetrathiafulvaleneâ^`Tetracarboxylate: An Intriguing Building Block with Versatility in Coordination Structures and Redox Properties. Inorganic Chemistry, 2010, 49, 7372-7381.	4.0	49
59	Effects of Protonation and Metal Coordination on Intramolecular Charge Transfer of Tetrathiafulvalene Compound. Inorganic Chemistry, 2007, 46, 10065-10070.	4.0	69