
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073658/publications.pdf Version: 2024-02-01

MANUEL TLEDDAU

#	Article	IF	CITATIONS
1	Coordinated resource allocation to plant growth–defense tradeoffs. New Phytologist, 2022, 233, 1051-1066.	3.5	63
2	Asking half the question in explaining tropical diversity. Trends in Ecology and Evolution, 2022, , .	4.2	1
3	The complicated legacy of E. O. Wilson with respect to genetics and human behavior. BioEssays, 2022, , 2200034.	1.2	0
4	Trade-offs Among Resilience, Robustness, Stability, and Performance and How We Might Study Them. Integrative and Comparative Biology, 2021, , .	0.9	3
5	Measurement report: Variability in the composition of biogenic volatile organic compounds in a Southeastern US forest and their role in atmospheric reactivity. Atmospheric Chemistry and Physics, 2021, 21, 15755-15770.	1.9	10
6	The Significance of Aggregation Methods in Functional Group Modeling. Forests, 2021, 12, 1560.	0.9	1
7	Pollination in the Anthropocene: a Moth Can Learn Ozone-Altered Floral Blends. Journal of Chemical Ecology, 2020, 46, 987-996.	0.9	25
8	High Heterogeneity in Canopy Temperature Among Coâ€occurring Tree Species in a Temperate Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005892.	1.3	16
9	Solarâ€induced chlorophyll fluorescence and shortâ€ŧerm photosynthetic response to drought. Ecological Applications, 2020, 30, e02101.	1.8	80
10	Gap models across micro- to mega-scales of time and space: examples of Tansley's ecosystem concept. Forest Ecosystems, 2020, 7, .	1.3	12
11	Soil bacterial communities in grasslands revegetated using <i>ElymusÂnutans</i> are largely influenced by soil pH and total phosphorus across restoration time. Land Degradation and Development, 2019, 30, 2243-2256.	1.8	15
12	Complexities between plants and the atmosphere. Nature Geoscience, 2019, 12, 693-694.	5.4	9
13	Building bottomâ€up aggregateâ€based models (ABMs) in soil systems with a view of aggregates as biogeochemical reactors. Global Change Biology, 2019, 25, e6-e8.	4.2	10
14	Demography and destiny: The syngameon in hyperdiverse systems. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8105-8105.	3.3	10
15	Observing Severe Drought Influences on Ozone Air Pollution in California. Environmental Science & Technology, 2019, 53, 4695-4706.	4.6	30
16	Soil aggregates as biogeochemical reactors and implications for soil–atmosphere exchange of greenhouse gases—A concept. Global Change Biology, 2019, 25, 373-385.	4.2	76
17	Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. Journal of Integrative Plant Biology, 2018, 60, 323-340.	4.1	87
18	Biodiversity matters in feedbacks between climate change and air quality: a study using an individualâ€based model. Ecological Applications, 2018, 28, 1223-1231.	1.8	16

#	Article	IF	CITATIONS
19	An individual-based model of forest volatile organic compound emissions—UVAFME-VOC v1.0. Ecological Modelling, 2017, 350, 69-78.	1.2	20
20	The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology, 2017, 116, 30-41.	2.1	38
21	Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution mediated by the biosphere. Environmental Research Letters, 2017, 12, 084001.	2.2	13
22	Correlating species and spectral diversities using hyperspectral remote sensing in earlyâ€successional fields. Ecology and Evolution, 2017, 7, 3475-3488.	0.8	17
23	The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. National Science Review, 2017, 4, 721-734.	4.6	118
24	Widespread production of nonmicrobial greenhouse gases in soils. Global Change Biology, 2017, 23, 4472-4482.	4.2	40
25	Forests and ozone: productivity, carbon storage and feedbacks. Scientific Reports, 2016, 6, 22133.	1.6	35
26	Minding (and bridging) the gap between evolutionary ecology and atmospheric biogeochemistry in a study of plant pollinator behaviour. New Phytologist, 2016, 209, 11-12.	3.5	0
27	Variable mating behaviors and the maintenance of tropical biodiversity. Frontiers in Genetics, 2015, 6, 183.	1.1	39
28	The native–invasive balance: implications for nutrient cycling in ecosystems. Oecologia, 2013, 173, 319-328.	0.9	26
29	Catabolism of volatile organic compounds influences plant survival. Trends in Plant Science, 2013, 18, 695-703.	4.3	55
30	Biogeochemical impacts of the northward expansion of kudzu under climate change: the importance of ecological context. Ecosphere, 2013, 4, 1-15.	1.0	9
31	Plantâ^'Soil Distribution of Potentially Toxic Elements in Response to Elevated Atmospheric CO ₂ . Environmental Science & Technology, 2011, 45, 2570-2574.	4.6	26
32	Non-natives: four risk factors. Nature, 2011, 475, 36-37.	13.7	13
33	Short term changes in methanol emission and pectin methylesterase activity are not directly affected by light in <i>Lycopersicon esculentum</i> . Biogeosciences, 2011, 8, 1023-1030.	1.3	10
34	Leaf and root pectin methylesterase activity and ¹³ C/ ¹² C stable isotopic ratio measurements of methanol emissions give insight into methanol production in <i>Lycopersicon esculentum</i> . New Phytologist, 2011, 191, 1031-1040.	3.5	28
35	Leaf traits and water relations of 12 evergreen species in Costa Rican wet and dry forests: patterns of intra-specific variation across forests and seasons. Plant Ecology, 2010, 211, 133-146.	0.7	44
36	Kudzu (<i>Pueraria montana</i>) invasion doubles emissions of nitric oxide and increases ozone pollution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10115-10119.	3.3	73

#	Article	IF	CITATIONS
37	Reply to Gupta and Igamberdiev: Mechanisms and feedbacks in N fixation and NO production. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E154-E154.	3.3	Ο
38	Plant and Soil Mediation of Elevated CO2 Impacts on Trace Metals. Ecosystems, 2009, 12, 715-727.	1.6	32
39	Effects of air pollution on biogenic volatiles and ecological interactions. Oecologia, 2009, 160, 411-420.	0.9	72
40	Effects of elevated carbon dioxide and nitrogen fertilization on nitrate reductase activity in sweetgum and loblolly pine trees in two temperate forests. Plant and Soil, 2009, 314, 197-210.	1.8	32
41	Decomposition in tropical forests: a panâ€ŧropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	1.9	256
42	A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 2009, 5, 283-291.	3.9	606
43	Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biology, 2009, 11, 591-597.	1.8	33
44	Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict?This article is one of a selection of papers from NE Forests 2100: A Synthesis of Climate Change Impacts on Forests of the Northeastern US and Eastern Canada Canadian Journal of Forest Research, 2009, 39, 231-248.	0.8	393
45	Tolerance to herbivory, and not resistance, may explain differential success of invasive, naturalized, and native North American temperate vines. Diversity and Distributions, 2008, 14, 169-178.	1.9	83
46	Effects of experimental manipulation of light and nutrients on establishment of seedlings of native and invasive woody species in Long Island, NY forests. Biological Invasions, 2008, 10, 821-831.	1.2	35
47	Increased mercury in forest soils under elevated carbon dioxide. Oecologia, 2008, 158, 343-354.	0.9	16
48	Biodiversity enhancement induced by environmental noise. Journal of Theoretical Biology, 2008, 255, 332-337.	0.8	37
49	Plant physiological and environmental controls over the exchange of acetaldehyde between forest canopies and the atmosphere. Biogeosciences, 2008, 5, 1559-1572.	1.3	49
50	ECOLOGY: A Positive Feedback with Negative Consequences. Science, 2007, 316, 212-213.	6.0	62
51	Leaf- and shoot-level plasticity in response to different nutrient and water availabilities. Tree Physiology, 2007, 27, 1731-1739.	1.4	37
52	The Utility of Standardized Tests. Science, 2007, 316, 1694b-1697b.	6.0	5
53	The Challenge of Attracting Pollinators While Evading FloralÂHerbivores: Patterns of Fragrance Emission in Cirsium arvense and Cirsium repandum (Asteraceae). International Journal of Plant Sciences, 2007, 168, 587-601.	0.6	81
54	A maximum hypothesis of transpiration. Journal of Geophysical Research, 2007, 112, .	3.3	33

#	Article	IF	CITATIONS
55	Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytologist, 2007, 175, 244-254.	3.5	261
56	Influence of nutrient availability, stand age, and canopy structure on isoprene flux in aEucalyptus salignaexperimental forest. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	24
57	Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa. Plant, Cell and Environment, 2006, 29, 1298-1308.	2.8	22
58	Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytologist, 2005, 165, 913-921.	3.5	114
59	Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytologist, 2005, 167, 63-72.	3.5	191
60	The influence of light environment on photosynthesis and basal methylbutenol emission from Pinus ponderosa. Plant, Cell and Environment, 2005, 28, 1463-1474.	2.8	21
61	Use of carbon-11 in Populus shows that exogenous jasmonic acid increases biosynthesis of isoprene from recently fixed carbon. Plant, Cell and Environment, 2005, 28, 591-602.	2.8	60
62	INVASIVE SPECIES ACCELERATE DECOMPOSITION AND LITTER NITROGEN LOSS IN A MIXED DECIDUOUS FOREST. , 2005, 15, 1263-1272.		232
63	Variation in isoprene emission fromQuercus rubra: Sources, causes, and consequences for estimating fluxes. Journal of Geophysical Research, 2005, 110, .	3.3	44
64	Photosynthesis in Forest Canopies. , 2004, , 335-358.		6
65	Stress-induced changes in carbon sources for isoprene production in Populus deltoides. Plant, Cell and Environment, 2004, 27, 747-755.	2.8	96
66	Forest Invasibility in Communities in Southeastern New York. Biological Invasions, 2004, 6, 393-410.	1.2	69
67	Effects of Nitrogen Deposition on Insect Herbivory: Implications for Community and Ecosystem Processes. Ecosystems, 2004, 7, 109.	1.6	255
68	Ecology and evolution of lightâ€dependent and lightâ€independent phytogenic volatile organic carbon. New Phytologist, 2003, 157, 199-211.	3.5	81
69	The Evolution of Function in Plant Secondary Metabolites. International Journal of Plant Sciences, 2003, 164, S93-S102.	0.6	284
70	DIURNAL VARIATION IN THE BASAL EMISSION RATE OF ISOPRENE. , 2003, 13, 269-278.		41
71	INFLUENCES OF TEMPERATURE HISTORY, WATER STRESS, AND NEEDLE AGE ON METHYLBUTENOL EMISSIONS. Ecology, 2003, 84, 765-776.	1.5	34
72	INFLUENCES OF TEMPERATURE HISTORY, WATER STRESS, AND NEEDLE AGE ON METHYLBUTENOL EMISSIONS.		1

, 2003, 84, 765.

MANUEL T LERDAU

#	Article	IF	CITATIONS
73	Plants TalkBut Can They Listen?. Science, 2002, 298, 361b-363.	6.0	7
74	Trace gas emissions and species-dependent ecosystem services. Trends in Ecology and Evolution, 2002, 17, 309-312.	4.2	55
75	Benefits of the Carbon-Nutrient Balance Hypothesis. Oikos, 2002, 98, 534-536.	1.2	79
76	Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry. Oecologia, 2001, 127, 214-221.	0.9	98
77	New Directions: VOCs and biosphere–atmosphere feedbacks. Atmospheric Environment, 2001, 35, 189-191.	1.9	40
78	Canopy and leaf level 2-methyl-3-buten-2-ol fluxes from a ponderosa pine plantation. Atmospheric Environment, 2000, 34, 3535-3544.	1.9	100
79	Sources of Variability in Isoprene Emission and Photosynthesis in Two Species of Tropical Wet Forest Trees1. Biotropica, 2000, 32, 670.	0.8	21
80	Relationship between leaf nitrogen and photosynthetic rate for three NAD-ME and three NADP-ME C4 grasses. American Journal of Botany, 2000, 87, 412-417.	0.8	32
81	Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review. Bulletin of the American Meteorological Society, 2000, 81, 1537-1575.	1.7	532
82	ATMOSPHERIC CHEMISTRY: Enhanced: The NO2 Flux Conundrum. Science, 2000, 289, 2291-2293.	6.0	111
83	Sources of Variability in Isoprene Emission and Photosynthesis in Two Species of Tropical Wet Forest Trees ¹ . Biotropica, 2000, 32, 670-676.	0.8	2
84	Atmospheric Chemistry and Hydrocarbon Emissions from Plants. , 1999, 9, 1107-1108.		1
85	Kinetics of leaf temperature fluctuation affect isoprene emission from red oak (Quercus rubra) leaves. Tree Physiology, 1999, 19, 917-924.	1.4	93
86	Ecological and evolutionary aspects of isoprene emission from plants. Oecologia, 1999, 118, 109-123.	0.9	214
87	Defoliation effects on isoprene emission from Populus deltoides. Oecologia, 1999, 118, 333-339.	0.9	26
88	ISOPRENE EMISSION AND PHOTOSYNTHESIS IN A TROPICAL FOREST CANOPY: IMPLICATIONS FOR MODEL DEVELOPMENT. , 1999, 9, 1109-1117.		43
89	Isoprene emission from tropical forest canopy leaves. Global Biogeochemical Cycles, 1999, 13, 19-29.	1.9	76
90	WEATHER EFFECTS ON ISOPRENE EMISSION CAPACITY AND APPLICATIONS IN EMISSIONS ALGORITHMS. , 1999, 9, 1132-1137.		131

MANUEL T LERDAU

#	Article	IF	CITATIONS
91	Weather Effects on Isoprene Emission Capacity and Applications in Emissions Algorithms. , 1999, 9, 1132.		1
92	Plant Production and Emission of Volatile Organic Compounds. BioScience, 1997, 47, 373-383.	2.2	173
93	Controls over monoterpene emissions from boreal forest conifers. Tree Physiology, 1997, 17, 563-569.	1.4	72
94	Isoprene Increases Thermotolerance of Isoprene-Emitting Species. Plant Physiology, 1997, 115, 1413-1420.	2.3	282
95	Controls on isoprene emission from trees in a subtropical dry forest. Plant, Cell and Environment, 1997, 20, 569-578.	2.8	98
96	Allocation Theory and Chemical Defense. , 1997, , 265-277.		32
97	Insects and ecosystem function. Trends in Ecology and Evolution, 1996, 11, 151.	4.2	7
98	Ecological Controls over Monoterpene Emissions from Douglas-Fir (Pseudotsuga Menziesii). Ecology, 1995, 76, 2640-2647.	1.5	112
99	Biological aspects of constructing volatile organic compound emission inventories. Atmospheric Environment, 1995, 29, 2989-3002.	1.9	128
100	A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 1995, 100, 8873.	3.3	3,610
101	Plant growth and defense: reply to Herms and Mattson. Trends in Ecology and Evolution, 1995, 10, 39.	4.2	2
102	Monoterpene emission from ponderosa pine. Journal of Geophysical Research, 1994, 99, 16609.	3.3	64
103	Plant chemical defense: monoterpenes and the growth-differentiation balance hypothesis. Trends in Ecology and Evolution, 1994, 9, 58-61.	4.2	133
104	Future Discounts and Resource Allocation in Plants. Functional Ecology, 1992, 6, 371.	1.7	25
105	Seasonal patterns of acid fluctuations and resource storage in the arborescent cactus Opuntia excelsa in relation to light availability and size. Oecologia, 1992, 92, 166-171.	0.9	35
106	Tropical deciduous forest: Death of a biome. Trends in Ecology and Evolution, 1991, 6, 201-202.	4.2	63
107	Plant Function and Biogenic Terpene Emission. , 1991, , 121-134.		37
108	Response of Seedlings of Tropical Trees to Cool Temperatures Predicted by â€~Nuclear Winter' Scenarios. Environmental Conservation, 1990, 17, 337-340.	0.7	2