Jiancheng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073607/publications.pdf

Version: 2024-02-01

687363 552781 62 796 13 26 h-index citations g-index papers 62 62 62 544 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Towards a general design evaluation tool: The development and validation of a VPP for autonomous sailing monohulls. Applied Ocean Research, 2022, 120, 103053.	4.1	2
2	Conceptual design of a long-range autonomous underwater vehicle based on multidisciplinary optimization framework. Ocean Engineering, 2022, 248, 110684.	4.3	14
3	Amplitude of undulating fin in the vicinity of a wall: Influence of unsteady wall effect on marine propulsion. Ocean Engineering, 2022, 249, 110987.	4.3	6
4	Influence of Autonomous Sailboat Dual-Wing Sail Interaction on Lift Coefficients. Journal of Ocean University of China, 2022, 21, 656-668.	1.2	5
5	3D Deep Residual Convolutional Neural Network for Underwater Acoustic Source Localization Using Local Acoustic Intensity Field. , 2022, , .		O
6	High-Resolution and Accurate Spatial-Temporal Prediction of Oceanographic Fields via Sparse Observations from Marine Vehicle Network using Deep Learning and Data Assimilation., 2022,,.		0
7	Numerical investigation on the swimming mode and stable spacing with two self-propelled fish arranged in tandem. Ocean Engineering, 2022, 259, 111861.	4.3	7
8	A Kriged Compressive Sensing Approach to Reconstruct Acoustic Fields From Measurements Collected by Underwater Vehicles. IEEE Journal of Oceanic Engineering, 2021, 46, 294-306.	3.8	12
9	Assigning Multiple AUVs to Form Arrays Under Communication Range Limitations Based on the Element Zero Method. IEEE Systems Journal, 2021, 15, 1664-1673.	4.6	3
10	Research status of bionic amphibious robots: A review. Ocean Engineering, 2021, 227, 108862.	4.3	56
11	A path planning strategy for marine vehicles based on deep reinforcement learning and data-driven dynamic flow fields prediction. , 2021, , .		1
12	Research on the Trajectory Prediction of a Twin Screw AUV Based on an Accurate Dynamic Model. , 2021, , .		0
13	Ocean Circulation in the Challenger Deep Derived From Superâ€Deep Underwater Glider Observation. Geophysical Research Letters, 2021, 48, e2021GL093169.	4.0	4
14	A deep learning model for joint prediction of three-dimensional ocean temperature, salinity and flow fields., 2021,,.		2
15	Tracking moving mesoscale eddies with underwater gliders under autonomous prediction and control. Control Engineering Practice, 2021, 113, 104839.	5.5	4
16	Adaptive coverage sampling of thermocline with an autonomous underwater vehicle. Ocean Engineering, 2021, 233, 109151.	4.3	13
17	Autonomous sailboat design: A review from the performance perspective. Ocean Engineering, 2021, 238, 109753.	4.3	19
18	Response of the upper ocean to tropical cyclone in the Northwest Pacific observed by gliders during fall 2018. Acta Oceanologica Sinica, 2021, 40, 103-112.	1.0	4

#	Article	IF	Citations
19	Assign multiple AUVs to form a row efficiently based on a method of processing the cost matrix. Applied Ocean Research, 2020, 101, 102177.	4.1	6
20	Variations of mesoscale eddy SST fronts based on an automatic detection method in the northern South China Sea. Acta Oceanologica Sinica, 2020, 39, 82-90.	1.0	5
21	Real-time quality control of data from Sea-Wing underwater glider installed with Glider Payload CTD sensor. Acta Oceanologica Sinica, 2020, 39, 130-140.	1.0	11
22	Self-Noise Spectrum Analysis and Joint Noise Filtering for the Sea-Wing Underwater Glider Based on Experimental Data. IEEE Access, 2020, 8, 42960-42970.	4.2	6
23	Development of Multibody Marine Robots: A Review. IEEE Access, 2020, 8, 21178-21195.	4.2	22
24	Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences. Sensors, 2020, 20, 893.	3.8	11
25	Hydrodynamic Performance Analysis of Fly-Wing Underwater Glider Flaps Based on Overlapped Grid Technology. , 2020, , .		2
26	A novel navigation method for autonomous underwater vehicle in the middle water column. , 2020, , .		0
27	Distributed Traversability Analysis of Flow Field Under Communication Constraints. IEEE Journal of Oceanic Engineering, 2019, 44, 683-692.	3.8	2
28	Development and Experiments of the Passive Buoyancy Balance System for Sea-Whale 2000 AUV. , 2019, , .		5
29	Sea-Whale 2000: A Long-range Hybrid Autonomous Underwater Vehicle for Ocean Observation. , 2019, ,		6
30	Current status and prospects of marine renewable energy applied in ocean robots. International Journal of Energy Research, 2019, 43, 2016-2031.	4.5	35
31	Kuroshio intrusion into the South China Sea with an anticyclonic eddy: evidence from underwater glider observation. Journal of Oceanology and Limnology, 2019, 37, 1469-1480.	1.3	11
32	Improving the Real-time Marine Forecasting of the Northern South China Sea by Assimilation of Glider-observed T/S Profiles. Scientific Reports, 2019, 9, 17845.	3.3	13
33	Field-observation for an anticyclonic mesoscale eddy consisted of twelve gliders and sixty-two expendable probes in the northern South China Sea during summer 2017. Science China Earth Sciences, 2019, 62, 451-458.	5.2	41
34	Kuroshio intrusion into the South China Sea with an anticyclonic eddy: evidence from underwater glider observation., 2019, 37, 1469.		1
35	Research Status and Prospect of Autonomous Sailboats. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2018, 54, 98.	0.5	6
36	Time Series Prediction Methods for Depth-Averaged Current Velocities of Underwater Gliders. IEEE Access, 2017, 5, 5773-5784.	4.2	19

#	Article	IF	CITATIONS
37	Study of manipulator operations maneuvered by a ROV in virtual environments. Ocean Engineering, 2017, 142, 292-302.	4.3	16
38	Glider-observed anticyclonic eddy in northern South China Sea. Aquatic Ecosystem Health and Management, 2016, 19, 233-241.	0.6	36
39	Impact of folding propeller spinning position for the transit efficiency of a hybrid-driven underwater glider., 2016,,.		1
40	Design and analysis of folding propulsion mechanism for hybrid-driven underwater gliders. Ocean Engineering, 2016, 119, 125-134.	4.3	36
41	Data preprocessing and fitting algorithm based on marine data sampled by multiple underwater gliders. , 2016, , .		O
42	Control system for long-range survey hybrid-driven underwater glider. , 2015, , .		4
43	Lagrangian dynamic modeling of wave-driven unmanned surface vehicle in three dimensions based on the D-H approach. , 2015, , .		4
44	Sea surface cooling in the Northern South China Sea observed using Chinese sea-wing underwater glider measurements. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 105, 111-118.	1.4	32
45	Non-line-of-sight scattering channel modeling for underwater optical wireless communication. , 2015,		23
46	Study on the transit efficiency for hybrid driven underwater gliders based on a foldable propeller. , 2014, , .		0
47	A behavior-based planning strategy for deep-sea hydrothermal plume tracing with autonomous underwater vehicles. , 2014, , .		5
48	From simulation to validation: Moth-inspired chemical plume tracing with an autonomous underwater vehicle. , 2014, , .		2
49	Study on the motion characteristics in 3D space for a hybrid-driven underwater gilder based on a folding propulsion mechanism. , 2014, , .		1
50	Spiraling motion of underwater gliders: Modeling, analysis, and experimental results. Ocean Engineering, 2013, 60, 1-13.	4.3	163
51	Motion Parameter Optimization and Sensor Scheduling for the Sea-Wing Underwater Glider. IEEE Journal of Oceanic Engineering, 2013, 38, 243-254.	3.8	92
52	Adaptive Coverage Sampling of Underwater Glider. Jiqiren/Robot, 2012, 34, 566.	0.4	5
53	Behavior-based control of an autonomous underwater vehicle for adaptive plume mapping. , 2011, , .		2
54	Steady three dimensional gliding motion of an underwater glider. , 2011, , .		5

#	Article	IF	CITATIONS
55	Optimal distribution of propulsion for an amphibious robot based on wheel-propeller-leg mixed thrusters. , 2010, , .		1
56	Control system design of the Wheel-Paddle-Leg Integration Amphibious Robot. , 2010, , .		1
57	Discrete-time quasi-sliding mode control of underwater vehicles. , 2010, , .		1
58	Near-optimal collecting data strategy based on ordinary Kiriging variance. , 2010, , .		1
59	Propeller of Amphibious Robot Optimizing Design Based on Integrated Software Platform. , 2009, , .		O
60	Modeling and Optimization of Wheel-Propeller-Leg Integrated Driving Mechanism for an Amphibious Robot. , 2009, , .		2
61	Surrogate Models for Shape Optimization of Underwater Glider. , 2009, , .		7
62	Variations in Dissolved Oxygen Induced by a Tropical Storm Within an Anticyclone in the Northern South China Sea. Journal of Ocean University of China, 0, , 1.	1.2	2