Xing Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8073517/publications.pdf Version: 2024-02-01

XINC 7HU

#	Article	IF	CITATIONS
1	Synthesis of an amphiphilic amphoteric peptide-based polymer for organic chrome-free ecological tanning. Journal of Cleaner Production, 2022, 330, 129880.	4.6	12
2	A design approach to eliminate the toxic effect of insecticides to ensure human safety. Green Chemistry, 2022, 24, 3667-3676.	4.6	9
3	Dual Responsive Molecularâ€Arm Modified Single Enzyme Molecules for Efficient Cellulose Hydrolysis. Macromolecular Rapid Communications, 2022, 43, e2200092.	2.0	1
4	One-pot preparation of a multi-functional enzymatically generated gelatin hydrogel with controllable antibacterial and hemorheological properties. International Journal of Biological Macromolecules, 2021, 168, 143-151.	3.6	7
5	A Physically Cross-Linked Sodium Alginate–Gelatin Hydrogel with High Mechanical Strength. ACS Applied Polymer Materials, 2021, 3, 3197-3205.	2.0	44
6	Anemone-inspired enzymatic film for cellulose heterogeneous catalysis. Carbohydrate Polymers, 2021, 260, 117795.	5.1	12
7	Synthesis of Dualâ€Responsive Materials with Reversible and Switchable Phaseâ€Transition Properties for Highâ€Performance Cellulose Enzymatic Hydrolysis. ChemSusChem, 2020, 13, 663-667.	3.6	12
8	Novel Gelatin-based Eco-friendly Adhesive with a Hyperbranched Cross-linked Structure. Industrial & Engineering Chemistry Research, 2020, 59, 5500-5511.	1.8	33
9	Simultaneously and separately immobilizing incompatible dual-enzymes on polymer substrate via visible light induced graft polymerization. Applied Surface Science, 2018, 436, 73-79.	3.1	15
10	Sequential co-immobilization of \hat{l}^2 -glucosidase and yeast cells on single polymer support for bioethanol production. Science China Chemistry, 2018, 61, 1600-1608.	4.2	4
11	Reversible Thermal Cycling of DNA Material for Efficient Cellulose Hydrolysis. ACS Applied Bio Materials, 2018, 1, 1118-1123.	2.3	3
12	Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production. Macromolecular Rapid Communications, 2018, 39, e1800212.	2.0	2
13	Separated Immobilization of Incompatible Enzymes on Polymer Substrate via Visible Light Induced Living Photografting Polymerization. Langmuir, 2017, 33, 5577-5584.	1.6	10
14	Net-Immobilization of β-glucosidase on Nonwoven Fabrics to Lower the Cost of "Cellulosic Ethanol― and Increase Cellulose Conversions. Scientific Reports, 2016, 6, 23437.	1.6	9
15	A Mild Strategy To Encapsulate Enzyme into Hydrogel Layer Grafted on Polymeric Substrate. Langmuir, 2014, 30, 15229-15237.	1.6	32
16	Construction of DNA microarrays on cyclic olefin copolymer surfaces using confined photocatalytic oxidation. RSC Advances, 2014, 4, 46653-46661.	1.7	8
17	Preparation of multifunctional biohydrogel sensors with one freeze–thaw process. Journal of Applied Polymer Science, 0, , .	1.3	2