
Iwona Mejza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8072912/publications.pdf Version: 2024-02-01

IWONA MEIZA

#	Article	IF	CITATIONS
1	On a construction procedure for split-block-plot designs based on the Khatri–Rao product of incidence matrices. Biometrical Letters, 2022, 59, 55-63.	0.2	0
2	Dry Matter Yield of Maize (Zea mays L.) as an Indicator of Mineral Fertilizer Efficiency. Plants, 2021, 10, 535.	3.5	10
3	Evaluation of Nitrogen Yield-Forming Efficiency in the Cultivation of Maize (Zea mays L.) under Different Nutrient Management Systems. Sustainability, 2021, 13, 10917.	3.2	2
4	The Role of Agrotechnical Factors in Shaping the Protein Yield of Maize (Zea mays L.). Sustainability, 2020, 12, 6833.	3.2	6
5	In-Soil Application of NP Mineral Fertilizer as a Method of Improving Nitrogen Yielding Efficiency. Agronomy, 2020, 10, 1488.	3.0	9
6	Influence of the depth of nitrogen-phosphorus fertiliser placement in soil on maize yielding. Plant, Soil and Environment, 2020, 66, 14-21.	2.2	11
7	Assessment of the impact of NP fertilizer application depth on the rate of initial dry matter accumulation of maize (<i>Zea mays</i> L.). Biometrical Letters, 2020, 57, 253-260.	0.2	1
8	The Role of Agrotechnical Factors in Shaping the Health of Maize Plants (<i>Zea mays</i> L.). Polish Journal of Environmental Studies, 2020, 30, 863-869.	1.2	1
9	Yielding of two types of maize cultivars in relation to selected agrotechnical factors. Plant, Soil and Environment, 2019, 65, 416-423.	2.2	11
10	Seasonal Changes Affect Root Prunasin Concentration in Prunus serotina and Override Species Interactions between P. serotina and Quercus petraea. Journal of Chemical Ecology, 2016, 42, 202-214.	1.8	9
11	The comparison of three models applied to the analysis of a three-factor trial on hybrid maize (<i>Zea) Tj ETQq1</i>	1 0,78431 0.2	4 rgBT /Ove
12	Check plots in field breeding experiments. Biometrical Letters, 2013, 50, 137-149.	0.2	0
13	A Method of Constructing Incomplete Split-Plot Designs Supplemented by Control Treatments and Their Analysis. Journal of Statistical Theory and Practice, 2012, 6, 204-219.	0.5	1
14	Incomplete Split-Plot Designs Supplemented by a Single Control. Communications in Statistics - Theory and Methods, 2012, 41, 2490-2502.	1.0	1
15	Analyzing genotype-by-environment interaction using curvilinear regression. Scientia Agricola, 2012, 69, 357-363.	1.2	3
16	On the efficiency of some non-orthogonal split-plot×split-block designs with control treatments. Journal of Statistical Planning and Inference, 2012, 142, 752-762.	0.6	0
17	Individual control treatment in split-plot experiments. Statistical Papers, 2009, 50, 697-710.	1.2	6
18	Resolvable semi-balanced incomplete split-block designs. Metrika, 2005, 61, 9-16.	0.8	2

Iwona Mejza

#	Article	IF	CITATIONS
19	Incomplete split-plot designs generated by some resolvable balanced designs. Statistics and Probability Letters, 2004, 68, 9-15.	0.7	10
20	On the efficiency of some supplemented (α1,α2,…,αR)-resolvable block designs. Statistics and Probability Letters, 2002, 57, 291-299.	0.7	0
21	Characterisation of Certain Split-Block Designs with a Control. Biometrical Journal, 1998, 40, 627-639.	1.0	3
22	Incomplete Split-Plot Designs Generatd By GDPBIBD(2). Calcutta Statistical Association Bulletin, 1996, 46, 117-128.	0.3	11
23	Model Building and Analysis for Block Designs with Nested Rows and Columns. Biometrical Journal, 1994, 36, 327-340.	1.0	10
24	Incomplete split plot designs. Statistics and Probability Letters, 1984, 2, 327-332.	0.7	16